Question #155524

Question Link: https://ibb.co/xzWC2Ly


1
Expert's answer
2021-01-14T16:40:56-0500

As the displacement should satisfy the given equation, we will insert the expressions of x,E\vec{x}, \vec{E} into this equation :

m(x0eiωt)+mγ(x0eiωt)=eE0eiωtm(\vec{x_0}e^{-i\omega t})''+m\gamma (\vec{x_0}e^{-i\omega t})' =-e\vec{E}_0 e^{-i\omega t}

ω2mx0eiωtimωγx0eiωt=eE0eiωt-\omega^2 m\vec{x_0}e^{-i\omega t} -im\omega\gamma \vec{x_0} e^{-i\omega t} = -e \vec{E}_0 e^{-i\omega t}

x0=eE0m(ω2+iωγ)\vec{x_0}=\frac{e\vec{E_0}}{m(\omega^2+ i\omega \gamma)} , now multiply both by eiωte^{-i\omega t}

x(ω,t)=eE(t)m(ω2+iωγ)\vec{x}(\omega, t) = \frac{e \vec{E}(t)}{m(\omega^2+i\omega \gamma)}

By definition, polarization vector is

P(ω)=ρx\vec{P}(\omega) = \rho \cdot \vec{x} , where ρ\rho is charge density. Thus, if nn is electron concentration, then

P(ω)=ne2E(t)m(ω2+iωγ)\vec{P}(\omega) = \frac{-ne^2\vec{E}(t)}{m(\omega^2+i\omega\gamma)}

By definition of permittivity :

ϵ0E+P=ϵ0ϵE\epsilon_0\vec{E}+\vec{P}=\epsilon_0\epsilon\vec{E}

ϵ(ω)=1ne2ϵ0m(ω2+iωγ)\epsilon (\omega)= 1 - \frac{ne^2}{\epsilon_0m(\omega^2+i\omega\gamma)}

ϵ(ω)=1ωp2ω2+iωγ,ωp2=ne2ϵ0m\epsilon(\omega)= 1-\frac{\omega_p^2}{\omega^2+i\omega\gamma}, \omega_p^2=\frac{ne^2}{\epsilon_0m}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS