Answer
X component of force can be written as
F x = 1 2 K q 1 q 4 ( 5 2 c m ) 2 + K q 2 q 4 ( 5 c m ) 2 F_x=\frac{1}{\sqrt{2}}K\frac{q_1q_4}{(5\sqrt{2}cm)^2}+K\frac{q_2q_4}{(5cm)^2} F x = 2 1 K ( 5 2 c m ) 2 q 1 q 4 + K ( 5 c m ) 2 q 2 q 4
F x = 1 2 ( 9 × 1 0 9 ) ( 100 n c ) ( 200 n c ) ( 5 2 c m ) 2 + ( 9 × 1 0 9 ) ( 100 n c ) ( 200 n c ) ( 5 c m ) 2 F_x=\frac{1}{\sqrt{2}}(9\times10^9)\frac{(100nc)(200nc)}{(5\sqrt{2}cm)^2}+(9\times10^9)\frac{(100nc)(200nc)}{(5cm)^2} F x = 2 1 ( 9 × 1 0 9 ) ( 5 2 c m ) 2 ( 100 n c ) ( 200 n c ) + ( 9 × 1 0 9 ) ( 5 c m ) 2 ( 100 n c ) ( 200 n c )
F x = 0.05 i ^ N F_x=0.05\hat i N F x = 0.05 i ^ N
Y component can be given as
F y = 1 2 ( 9 × 1 0 9 ) ( 100 n c ) ( 200 n c ) ( 5 2 c m ) 2 + ( 9 × 1 0 9 ) ( 200 n c ) ( 200 n c ) ( 5 c m ) 2 F_y=\frac{1}{\sqrt{2}}(9\times10^9)\frac{(100nc)(200nc)}{(5\sqrt{2}cm)^2}+(9\times10^9)\frac{(200nc)(200nc)}{(5cm)^2} F y = 2 1 ( 9 × 1 0 9 ) ( 5 2 c m ) 2 ( 100 n c ) ( 200 n c ) + ( 9 × 1 0 9 ) ( 5 c m ) 2 ( 200 n c ) ( 200 n c )
F y = 0.16 j ^ N F_y=0.16\hat{j}N F y = 0.16 j ^ N
Angle with horizontal can be given as
c o s θ = F x F R = 0.05 0.167 θ = 72.6 ° cos\theta=\frac{F_x}{F_R}=\frac{0.05}{0.167}\\\theta=72.6° cos θ = F R F x = 0.167 0.05 θ = 72.6°
Comments