Question #151449
Consider three charges, one of magnitude +2Q and other two have magnitude -Q. They are
placed in a constellation as depicted in the figure below. Find out the electric intensity at some
spherical point P(r, theta,
1
Expert's answer
2020-12-17T07:26:43-0500

Electric potential at the point P due to the charge -Q on the z axis V1=Q4πϵo(rdcosθ2)V_1=\frac{-Q}{4\pi \epsilon_o (r-\frac{d\cos\theta}{2})}


Electric potential at the point P due to the charge -Q on the -z axis V2=Q4πϵo(r+dcosθ2)V_2=\frac{-Q}{4\pi \epsilon_o (r+\frac{d\cos\theta}{2})}

Electric potential at the point P due to the charge 2Q, V3=2Q4πϵorV_3=\frac{2Q}{4\pi \epsilon_o r}

Hence, net electric potential at the point P,

V=V1+V2+V3=Q4πϵo(rdcosθ2)+Q4πϵo(r+dcosθ2)+2Q4πϵorV=V_1+V_2+V_3 =\frac{-Q}{4\pi \epsilon_o (r-\frac{d\cos\theta}{2})}+\frac{-Q}{4\pi \epsilon_o (r+\frac{d\cos\theta}{2})}+\frac{2Q}{4\pi \epsilon_o r}


=2Q4πϵor2Qr4πϵo(r2d2cosθ4)=\frac{2Q}{4\pi \epsilon_o r}-\frac{2Qr}{4\pi \epsilon_o (r^2-\frac{d^2\cos\theta}{4})}


Hence, electric field intensity at the point P,

E=r^r[Q4πϵo(r2d2cosθ4)]θ^1rθ[Q4πϵo(r2d2cosθ4)]r^r[2Q4πϵr2]E=\hat{r}\frac{\partial}{\partial r}[\frac{-Q}{4\pi \epsilon_o (r^2-\frac{d^2\cos\theta}{4})}]-\hat{\theta}\frac{1}{r}\frac{\partial}{\partial \theta}[\frac{-Q}{4\pi \epsilon_o (r^2-\frac{d^2\cos\theta}{4})}]-\hat{r}\dfrac{\partial}{\partial r}[\frac{2Q}{4\pi \epsilon r^2}]


E=r^[Q(r2+d2cosθ4)4πϵo(r2d2cosθ4)+2Q4πϵr2][2Qd2×2sinθ.cosθ4πϵo×4(r2d2cosθ4)]θ^E=\hat{r}[\frac{-Q(r^2+\frac{d^2\cos\theta}{4})}{4\pi \epsilon_o (r^2-\frac{d^2\cos\theta}{4})} +\frac{2Q}{4\pi \epsilon r^2}]-[\frac{-2Qd^2\times 2\sin\theta.\cos\theta}{4\pi \epsilon_o \times 4(r^2-\frac{d^2\cos\theta}{4})}]\hat{ \theta}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS