Answer
Electric field on the axis of ring is given by
E=kqx(x2+R2)1.5E=\frac{kqx}{(x^2+R^2)^{1.5}}E=(x2+R2)1.5kqx
For maximum of electric field differentiate above electric field with respect to x
dEdx=0\frac{dE}{dx}=0dxdE=0
then we get
x=±R2x=\pm\frac{R}{\sqrt{2}}x=±2R Here electric field is maximum.
Putting value of x then we get
Emax=kqx((R2)2+R2)1.5=2kq33R2E_{max}=\frac{kqx}{((\frac{R}{\sqrt{2}})^2+R^2)^{1.5}}=\frac{2kq}{3\sqrt{3}R^2}Emax=((2R)2+R2)1.5kqx=33R22kq
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments