Given quantities:
number of turns(n)=1000
Area of the coil(A)= 0.2 square meter
Magnetic field(B)= "\\sqrt{2}" Tesla
Angle("\\delta\\theta") rotated by 45"\\degree" in time("\\delta{t}") 2 sec with constant angular velocity ("\\omega") .
Detailed solution
formula for flux is...
"\\phi=\\vec{B}.\\vec{A}= B A \\cos{\\theta}=B A \\cos{\\omega t}\\\\\nemf=-\\bigg(\\cfrac{d\\phi}{dt}\\bigg)\\\\\nemf=\\omega n B A \\sin{\\omega t}\\\\\n<emf>=\\cfrac{\\int_0^2{(emf) dt}}{\\int_0^2{dt}}\\\\\n<emf>=-\\cfrac{nBA}{2}\\bigg|\\cos(\\omega t)\\bigg|_0^2\\\\\n<emf>=-\\cfrac{nBA}{2}[\\cos{2\\omega }- \\cos{0}].....eq[1]\\\\"and
Now putting the value of "\\omega" in eq[1] and we get...
"<emf>=-\\cfrac{nBA}{2}\\bigg[\\cos(\\cfrac{\\pi}{4})-1\\bigg]\\\\"putting the values of n, B and A, we get..
"<emf>=\\cfrac{1000\\times \\sqrt{2}\\times0.2 }{2}\\bigg[\\cfrac{\\sqrt{2}-1}{\\sqrt{2}}\\bigg]\\\\\n=100(\\sqrt2-1)\\\\\n<emf>=41.4 volt.....Ans"average e.m.f induced in the coil is 41.4 volt.
Comments
Leave a comment