Let the x component of the electric field strength at point P with Cartesian co-ordinates (x, y, 0)
E 1 = 2 p cos θ 4 π ϵ o r 3 E_1=\frac{2p\cos\theta}{4\pi \epsilon_o r^3} E 1 = 4 π ϵ o r 3 2 p c o s θ along PD
E 2 = p sin θ 4 π ϵ o r 3 E_2=\frac{p\sin\theta}{4\pi \epsilon_o r^3} E 2 = 4 π ϵ o r 3 p s i n θ along PC
Net, electric field intensity
E = E 1 2 + E 2 2 E=\sqrt{E_1^2+E_2^2} E = E 1 2 + E 2 2
⇒ E = ( 2 p cos θ 4 π ϵ o r 3 ) 2 + ( p sin θ 4 π ϵ o r 3 ) 2 \Rightarrow E=\sqrt{(\frac{2p\cos\theta}{4\pi \epsilon_o r^3})^2+(\frac{p\sin\theta}{4\pi \epsilon_o r^3})^2} ⇒ E = ( 4 π ϵ o r 3 2 p c o s θ ) 2 + ( 4 π ϵ o r 3 p s i n θ ) 2
⇒ E = p 4 π ϵ o r 3 4 cos 2 θ + sin 2 θ \Rightarrow E =\frac{p}{4\pi \epsilon_o r^3} \sqrt{4\cos^2\theta +\sin^2\theta} ⇒ E = 4 π ϵ o r 3 p 4 cos 2 θ + sin 2 θ
⇒ E = p 4 π ϵ o r 3 3 cos 2 θ + 1 \Rightarrow E =\frac{p}{4\pi \epsilon_o r^3} \sqrt{3\cos^2\theta +1} ⇒ E = 4 π ϵ o r 3 p 3 cos 2 θ + 1
Comments