Question #140436
Question: https://ibb.co/gjjB1rs
Answer: https://ibb.co/K276MzX
1
Expert's answer
2020-10-29T10:17:26-0400

We know that the bound volume density current can be written as

J=×M\overrightarrow{J}=\nabla \times \overrightarrow{M}

As we know that the magnetization of bound volume current is constant hence the curl of M\overrightarrow{M} is zero.

As in the question, it is given that magnetization is in z axis.

σM=M.n\sigma_{M}=\overrightarrow{M}.\overrightarrow{n}

but n^=u\hat{n}=\nabla u


u=x24a2+y24a2+z24b21u=\frac{x^2}{4a^2}+\frac{y^2}{4a^2}+\frac{z^2}{4b^2}-1


u=2x4a2i^+2y4a2j^+2z4b2k^\Rightarrow \nabla u =\frac{2x}{4a^2}\hat{i} +\frac{2y}{4a^2}\hat{j}+\frac{2z}{4b^2}\hat{k}


u=x2a2i^+y2a2j^+z2b2k^\Rightarrow \nabla u =\frac{x}{2a^2}\hat{i} +\frac{y}{2a^2}\hat{j}+\frac{z}{2b^2}\hat{k}


n^=x2a2i^+y2a2j^+z2b2k^\hat{n}=\frac{x}{2a^2}\hat{i} +\frac{y}{2a^2}\hat{j}+\frac{z}{2b^2}\hat{k}


n=x2a2i^+y2a2j^+z2b2k^(x2a)2+(y2a)2+(z2a)2n=\frac{\frac{x}{2a^2}\hat{i} +\frac{y}{2a^2}\hat{j}+\frac{z}{2b^2}\hat{k}}{\sqrt{(\frac{x}{2a})^2+(\frac{y}{2a})^2+(\frac{z}{2a})^2}}


σM=(Mo2bk^).x2a2i^+y2a2j^+z2b2k^(x2a)2+(y2a)2+(z2a)2\Rightarrow \sigma_{M}=(\overrightarrow{M_o}2b\hat{k}).\frac{\frac{x}{2a^2}\hat{i} +\frac{y}{2a^2}\hat{j}+\frac{z}{2b^2}\hat{k}}{\sqrt{(\frac{x}{2a})^2+(\frac{y}{2a})^2+(\frac{z}{2a})^2}}


σM=Mozb(x2a)2+(y2a)2+(z2a)2\Rightarrow \sigma_{M}=\frac{M_oz}{b\sqrt{(\frac{x}{2a})^2+(\frac{y}{2a})^2+(\frac{z}{2a})^2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS