We know that the bound volume density current can be written as
J → = ∇ × M → \overrightarrow{J}=\nabla \times \overrightarrow{M} J = ∇ × M
As we know that the magnetization of bound volume current is constant hence the curl of M → \overrightarrow{M} M is zero.
As in the question, it is given that magnetization is in z axis.
σ M = M → . n → \sigma_{M}=\overrightarrow{M}.\overrightarrow{n} σ M = M . n
but n ^ = ∇ u \hat{n}=\nabla u n ^ = ∇ u
u = x 2 4 a 2 + y 2 4 a 2 + z 2 4 b 2 − 1 u=\frac{x^2}{4a^2}+\frac{y^2}{4a^2}+\frac{z^2}{4b^2}-1 u = 4 a 2 x 2 + 4 a 2 y 2 + 4 b 2 z 2 − 1
⇒ ∇ u = 2 x 4 a 2 i ^ + 2 y 4 a 2 j ^ + 2 z 4 b 2 k ^ \Rightarrow \nabla u =\frac{2x}{4a^2}\hat{i} +\frac{2y}{4a^2}\hat{j}+\frac{2z}{4b^2}\hat{k} ⇒ ∇ u = 4 a 2 2 x i ^ + 4 a 2 2 y j ^ + 4 b 2 2 z k ^
⇒ ∇ u = x 2 a 2 i ^ + y 2 a 2 j ^ + z 2 b 2 k ^ \Rightarrow \nabla u =\frac{x}{2a^2}\hat{i} +\frac{y}{2a^2}\hat{j}+\frac{z}{2b^2}\hat{k} ⇒ ∇ u = 2 a 2 x i ^ + 2 a 2 y j ^ + 2 b 2 z k ^
n ^ = x 2 a 2 i ^ + y 2 a 2 j ^ + z 2 b 2 k ^ \hat{n}=\frac{x}{2a^2}\hat{i} +\frac{y}{2a^2}\hat{j}+\frac{z}{2b^2}\hat{k} n ^ = 2 a 2 x i ^ + 2 a 2 y j ^ + 2 b 2 z k ^
n = x 2 a 2 i ^ + y 2 a 2 j ^ + z 2 b 2 k ^ ( x 2 a ) 2 + ( y 2 a ) 2 + ( z 2 a ) 2 n=\frac{\frac{x}{2a^2}\hat{i} +\frac{y}{2a^2}\hat{j}+\frac{z}{2b^2}\hat{k}}{\sqrt{(\frac{x}{2a})^2+(\frac{y}{2a})^2+(\frac{z}{2a})^2}} n = ( 2 a x ) 2 + ( 2 a y ) 2 + ( 2 a z ) 2 2 a 2 x i ^ + 2 a 2 y j ^ + 2 b 2 z k ^
⇒ σ M = ( M o → 2 b k ^ ) . x 2 a 2 i ^ + y 2 a 2 j ^ + z 2 b 2 k ^ ( x 2 a ) 2 + ( y 2 a ) 2 + ( z 2 a ) 2 \Rightarrow \sigma_{M}=(\overrightarrow{M_o}2b\hat{k}).\frac{\frac{x}{2a^2}\hat{i} +\frac{y}{2a^2}\hat{j}+\frac{z}{2b^2}\hat{k}}{\sqrt{(\frac{x}{2a})^2+(\frac{y}{2a})^2+(\frac{z}{2a})^2}} ⇒ σ M = ( M o 2 b k ^ ) . ( 2 a x ) 2 + ( 2 a y ) 2 + ( 2 a z ) 2 2 a 2 x i ^ + 2 a 2 y j ^ + 2 b 2 z k ^
⇒ σ M = M o z b ( x 2 a ) 2 + ( y 2 a ) 2 + ( z 2 a ) 2 \Rightarrow \sigma_{M}=\frac{M_oz}{b\sqrt{(\frac{x}{2a})^2+(\frac{y}{2a})^2+(\frac{z}{2a})^2}} ⇒ σ M = b ( 2 a x ) 2 + ( 2 a y ) 2 + ( 2 a z ) 2 M o z
Comments