We know that the bound volume density current can be written as
"\\overrightarrow{J}=\\nabla \\times \\overrightarrow{M}"
As we know that the magnetization of bound volume current is constant hence the curl of "\\overrightarrow{M}" is zero.
As in the question, it is given that magnetization is in z axis.
"\\sigma_{M}=\\overrightarrow{M}.\\overrightarrow{n}"
but "\\hat{n}=\\nabla u"
"u=\\frac{x^2}{4a^2}+\\frac{y^2}{4a^2}+\\frac{z^2}{4b^2}-1"
"\\Rightarrow \\nabla u =\\frac{2x}{4a^2}\\hat{i} +\\frac{2y}{4a^2}\\hat{j}+\\frac{2z}{4b^2}\\hat{k}"
"\\Rightarrow \\nabla u =\\frac{x}{2a^2}\\hat{i} +\\frac{y}{2a^2}\\hat{j}+\\frac{z}{2b^2}\\hat{k}"
"\\hat{n}=\\frac{x}{2a^2}\\hat{i} +\\frac{y}{2a^2}\\hat{j}+\\frac{z}{2b^2}\\hat{k}"
"n=\\frac{\\frac{x}{2a^2}\\hat{i} +\\frac{y}{2a^2}\\hat{j}+\\frac{z}{2b^2}\\hat{k}}{\\sqrt{(\\frac{x}{2a})^2+(\\frac{y}{2a})^2+(\\frac{z}{2a})^2}}"
"\\Rightarrow \\sigma_{M}=(\\overrightarrow{M_o}2b\\hat{k}).\\frac{\\frac{x}{2a^2}\\hat{i} +\\frac{y}{2a^2}\\hat{j}+\\frac{z}{2b^2}\\hat{k}}{\\sqrt{(\\frac{x}{2a})^2+(\\frac{y}{2a})^2+(\\frac{z}{2a})^2}}"
"\\Rightarrow \\sigma_{M}=\\frac{M_oz}{b\\sqrt{(\\frac{x}{2a})^2+(\\frac{y}{2a})^2+(\\frac{z}{2a})^2}}"
Comments
Leave a comment