The Gauss's theorem is given by a equation:
div(E)=−4πλdiv(E) = -4\pi\lambdadiv(E)=−4πλ
∫Vdiv(E)=∫SEds\int _V div (E) = \int_S E ds∫Vdiv(E)=∫SEds - Gauss's theorem
∫Vdiv(E)=−4πλ∫Ldl=−4πλL\int_V div (E) = -4\pi\lambda \int_L dl = -4\pi \lambda L∫Vdiv(E)=−4πλ∫Ldl=−4πλL
∫SEds=2π∣y∣LE(x,y)\int_S Eds = 2\pi |y|LE(x,y)∫SEds=2π∣y∣LE(x,y)
If we've integrated it and evaluated E(x,y) then :
E(x,a)=−2λ∣a∣E(x,a) = -2\frac{\lambda}{|a|}E(x,a)=−2∣a∣λ
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments