R = 8 ohm
C = 160 µ F = 160 ∗ 1 0 − 6 F C = 160\; µF = 160*10^{-6}\; F C = 160 µ F = 160 ∗ 1 0 − 6 F
L = 1.5 m H = 1.5 × 1 0 − 3 H L = 1.5\; mH = 1.5\times10^{-3}\; H L = 1.5 m H = 1.5 × 1 0 − 3 H
V = 15 V
f = 500 Hz
Peak voltage V 0 = 2 V V_0 = \sqrt{2}V V 0 = 2 V
V 0 = 15 × 2 = 21.21 V V_0 = 15\times\sqrt{2} = 21.21 \;V V 0 = 15 × 2 = 21.21 V
Circuit impedance:
Z = R 2 + ( X L − X C ) 2 Z = \sqrt{R^2 + (X_L - X_C)^2} Z = R 2 + ( X L − X C ) 2
X L = 2 Π f L = 2 Π × 500 × 1.5 × 1 0 − 3 = 4.71 o h m X_L = 2ΠfL = 2Π\times500\times1.5\times10^{-3}= 4.71\; ohm X L = 2Π f L = 2Π × 500 × 1.5 × 1 0 − 3 = 4.71 o hm
X C = 1 2 Π f C = 1 2 Π × 500 × 160 × 1 0 − 6 = 1.99 o h m X_C = \frac{1}{2ΠfC}= \frac{1}{2Π\times500\times160\times10^{-6}} = 1.99\; ohm X C = 2Π f C 1 = 2Π × 500 × 160 × 1 0 − 6 1 = 1.99 o hm
Z = 8 2 + ( 4.71 – 1.99 ) 2 = 8.45 o h m Z = \sqrt{8^2 + (4.71 – 1.99)^2}=8.45\; ohm Z = 8 2 + ( 4.71–1.99 ) 2 = 8.45 o hm
Peak current through circuit:
I 0 = V 0 Z = 21.21 8.45 = 2.51 A I_0 = \frac{V_0}{Z} = \frac{21.21}{8.45} = 2.51 \;A I 0 = Z V 0 = 8.45 21.21 = 2.51 A
a) Power delivered to loudspeaker
P R = I 0 2 R = 2.5 1 2 × 8 = 50.4 W P_R = I_0^2R=2.51^2\times8=50.4\; W P R = I 0 2 R = 2.5 1 2 × 8 = 50.4 W
b) Maximum power that amplifier could deliver
P = I 0 2 Z = 2.5 1 2 × 8.45 = 53.23 W P = I_0^2Z = 2.51^2\times 8.45 = 53.23\; W P = I 0 2 Z = 2.5 1 2 × 8.45 = 53.23 W
Voltage across capacitor
V c = I 0 X C = 2.51 × 1.99 = 4.99 V V_c = I_0X_C = 2.51 \times 1.99 = 4.99\; V V c = I 0 X C = 2.51 × 1.99 = 4.99 V
c) Charge on capacitor
Q = C V c = 160 × 1 0 − 6 × 4.99 = 0.798 m C Q = CV_c = 160\times 10^{-6} \times 4.99 = 0.798\; mC Q = C V c = 160 × 1 0 − 6 × 4.99 = 0.798 m C
Comments
Leave a comment