Field is rotational, if its curl does not vanish. In cylindrical coordinates, curl is:"\\nabla \\times \\bold F = \\bold a_\\rho (\\frac{1}{\\rho}\\frac{\\partial A_z}{\\partial \\varphi} + \\frac{\\partial A_\\varphi}{\\partial z}) + \\bold a_\\varphi(\\frac{\\partial A_\\rho}{\\partial z} - \\frac{\\partial A_z}{\\partial \\rho}) + \\bold a_z \\frac{1}{\\rho}(\\frac{\\partial (\\rho A_\\varphi}{\\partial \\rho} - \\frac{\\partial A_\\rho}{\\partial \\varphi})"
For given field, "\\nabla \\times \\bold F = \\bold a_z \\frac{1}{\\rho}(\\frac{\\partial(10 \\rho)}{\\partial \\rho}) = \\frac{10}{\\rho} \\bold a_z".
From the last formula, curl does not vanish, hence the field is rotational.
Comments
Leave a comment