(a) The potential of a charge can be calculated as "\\varphi = k\\cdot\\dfrac{q}{r}." The total potential in A is "k\\cdot\\dfrac{q_1}{r_1} + k\\cdot\\dfrac{q_2}{r_2} = 9\\cdot10^9\\,\\mathrm{V\\cdot m\/C}\\cdot\\left(\\dfrac{3.2\\cdot10^{-9}\\,\\mathrm{C}}{0.1\\,\\mathrm{m}} + \\dfrac{-5.3\\cdot10^{-9}\\,\\mathrm{C}}{0.1\\,\\mathrm{m}} \\right) = -189\\,\\mathrm{V}."the
(b) We can see that there can be such a point. The sum of distance from q1 to B and from q2 to B cannot be less than the distance between q1 and q2. The potential in such a virtual point B can be calculated similarly:
"k\\cdot\\dfrac{q_1}{r_1} + k\\cdot\\dfrac{q_2}{r_2} = 9\\cdot10^9\\,\\mathrm{V\\cdot m\/C}\\cdot\\left(\\dfrac{3.2\\cdot10^{-9}\\,\\mathrm{C}}{0.09\\,\\mathrm{m}} + \\dfrac{-5.3\\cdot10^{-9}\\,\\mathrm{C}}{0.07\\,\\mathrm{m}} \\right) = -361\\,\\mathrm{V}."
(c) The work can be calculated as
"W_{A\\to B} = q\\cdot(\\varphi_A-\\varphi_B) = 3.5\\cdot10^{-9}\\,\\mathrm{C}\\cdot (-189\\,\\mathrm{B}-(-361\\,\\mathrm{V})) = 6\\cdot10^{-7}\\,\\mathrm{J}."
Comments
Leave a comment