Given that "R = 0.25\\Omega", "L = 60 \\mu H = 6\\cdot 10^{-5}H", "f = 1000 kHz".
a) Find "C" in the series RLC resonant circuit. The frequency of the resonant ciruit is given by:
"f = \\dfrac{1}{2\\pi}\\sqrt{\\dfrac{1}{LC} - \\dfrac{R^2}{4L^2}}"
Find "C" from this expression:
"C = \\dfrac{4L}{16\\pi^2 f^2L^2 + R^2} = \\dfrac{4\\cdot 6\\cdot 10^{-5}}{16\\pi^2 \\cdot 10^{12}\\cdot 36\\cdot 10^{-10} + 0.0625} = 4,22\\cdot 10^{-10} F = 0.422 nF".
b) Assume that antenna signal is "U = 10 mV". Then the peak current at "f = 1 MHz" is:
"I = \\dfrac{U}{Z}" , where "Z" is the module of impedance.
For the series RLC circuit:
"Z = \\sqrt{R^2 + (2\\pi fL - \\frac{1}{2\\pi fC})^2 } = \\sqrt{0.25^2 + (2\\pi 10^6\\cdot 6\\cdot 10^{-5} - \\frac{1}{2\\pi 10^6\\cdot 0.422\\cdot 10^{-9}})^2} = 0.29 \\Omega".
Thus, the current is:
"I = \\dfrac{10\\cdot 10^{-3}}{0.29} = 0.03448A= 34.5mA".
c)According to the formula for the capacitance from the part a), the "C" for "f = 1050 kHz" will be:
"C = \\dfrac{4L}{16\\pi^2 f^2L^2 + R^2} = \\dfrac{4\\cdot 6\\cdot 10^{-5}}{16\\pi^2\\cdot 1050^2 \\cdot 10^{6}\\cdot 36\\cdot 10^{-10} + 0.0625} = 3.83\\cdot 10^{-10} F = 0.383 nF"
The impedance then is:
"Z = \\sqrt{R^2 + (2\\pi fL - \\frac{1}{2\\pi fC})^2 } = \\sqrt{0.25^2 + (2\\pi\\cdot 1050\\cdot 10^3\\cdot 6\\cdot 10^{-5} - \\frac{1}{2\\pi \\cdot 1050\\cdot 10^3\\cdot 0.383\\cdot 10^{-9}})^2} = 0.26 \\Omega"
The current will be:
"I = \\dfrac{10\\cdot 10^{-3}}{0.26} = 0.03870A= 38.7mA"
d) The phase angle is given by:
"\\varphi = \\arctan(\\dfrac{2\\pi fL - \\frac{1}{2\\pi fC}}{R}) = \\arctan(\\dfrac{2\\pi 10^6\\cdot 6\\cdot 10^{-5} - \\frac{1}{2\\pi 10^6\\cdot 0.422\\cdot 10^{-9}}}{0.25}) = 31.5\\degree C."
Comments
Leave a comment