Question #113493
Positive charge Q is distributed uniformly along the positive y-axis between y = 0 and y = a. A point P lies on the positive x-axis, a distance x from the origin (see figure)
(a) Calculate the x and y-components of the electric field produced by the charge distribution Q at points on the positive x-axis.
(b) Show that if x≫a
E_x ≅Q/(4πε_0 x^2 )
E_y ≅- Qa/(8πε_0 x^3 )
Explain why this result is obtained
1
Expert's answer
2020-05-04T12:43:23-0400

As per the given question,

here i suppose ro=xr_o=x

a)

let the linear charge density =λ=\lambda



Let the length of the rod is l and the total charge distributed on the rod is Q.

dE=dQ4πϵor2dE=\dfrac{dQ}{4\pi \epsilon_o r^2}


dE=λda4πϵox2dE=\dfrac{\lambda da}{4\pi \epsilon_o x^2}


cosθ=ror\cos\theta=\dfrac{r_o}{r}

r=rosecθr=r_o\sec\theta

dE=λda4πϵoro2sec2θdE=\dfrac{\lambda da}{4\pi \epsilon_o r_o^2 \sec^2\theta}

tanθ=aro\tan \theta=\dfrac{a}{r_o}

da=rosec2θdθda=r_o sec^2\theta d\theta

dE=λda4πϵoro2secθdE=\dfrac{\lambda da}{4\pi \epsilon_o r_o^2\sec^\theta}

dE=λrosec2θdθ4πϵoro2sec2θ\Rightarrow dE=\dfrac{\lambda r_o \sec^2\theta d\theta}{4\pi \epsilon_o r_o^2 \sec^2\theta}

Now, taking x component and y component

dE=λdθ4πϵoro(cosθi^+sinθj^)dE=\dfrac{\lambda d\theta}{4\pi\epsilon_o r_o}(\cos\theta \hat{i}+\sin\theta \hat{j})

Now, integrating both side

0EE=λ4πϵoro(oθcosθdθi^+oθsinθdθj^)\int _0^EE=\dfrac{\lambda}{4\pi \epsilon_o r_o}(\int_o^\theta \cos\theta d\theta \hat{i}+\int_o^\theta \sin\theta d\theta\hat{j})

E=λ4πϵoro(sinθi^(cosθ+1)j^)E=\dfrac{\lambda}{4\pi \epsilon_o r_o}(\sin \theta \hat{i}-(\cos\theta+1)\hat{j})

now we can write sin and cos in the form of x,

E=λ4πϵox(xx2+a2i^(ax2+a2+1)j^)E=\dfrac{\lambda}{4\pi \epsilon_o x}(\dfrac{x}{\sqrt{x^2+a^2}} \hat{i}-(\dfrac{a}{\sqrt{x^2+a^2}}+1)\hat{j})

Now, if x>>a

so a2=0a^2=0

E=λ4πϵox2E=\dfrac{\lambda }{4\pi \epsilon_ox^2}

if x=a

E=λa8πϵox3E=\dfrac{\lambda a}{8\pi \epsilon_ox^3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS