As per the given question,
here i suppose "r_o=x"
a)
let the linear charge density "=\\lambda"
Let the length of the rod is l and the total charge distributed on the rod is Q.
"dE=\\dfrac{dQ}{4\\pi \\epsilon_o r^2}"
"dE=\\dfrac{\\lambda da}{4\\pi \\epsilon_o x^2}"
"\\cos\\theta=\\dfrac{r_o}{r}"
"r=r_o\\sec\\theta"
"dE=\\dfrac{\\lambda da}{4\\pi \\epsilon_o r_o^2 \\sec^2\\theta}"
"\\tan \\theta=\\dfrac{a}{r_o}"
"da=r_o sec^2\\theta d\\theta"
"dE=\\dfrac{\\lambda da}{4\\pi \\epsilon_o r_o^2\\sec^\\theta}"
"\\Rightarrow dE=\\dfrac{\\lambda r_o \\sec^2\\theta d\\theta}{4\\pi \\epsilon_o r_o^2 \\sec^2\\theta}"
Now, taking x component and y component
"dE=\\dfrac{\\lambda d\\theta}{4\\pi\\epsilon_o r_o}(\\cos\\theta \\hat{i}+\\sin\\theta \\hat{j})"
Now, integrating both side
"\\int _0^EE=\\dfrac{\\lambda}{4\\pi \\epsilon_o r_o}(\\int_o^\\theta \\cos\\theta d\\theta\n\\hat{i}+\\int_o^\\theta \\sin\\theta d\\theta\\hat{j})"
"E=\\dfrac{\\lambda}{4\\pi \\epsilon_o r_o}(\\sin \\theta \\hat{i}-(\\cos\\theta+1)\\hat{j})"
now we can write sin and cos in the form of x,
"E=\\dfrac{\\lambda}{4\\pi \\epsilon_o x}(\\dfrac{x}{\\sqrt{x^2+a^2}} \\hat{i}-(\\dfrac{a}{\\sqrt{x^2+a^2}}+1)\\hat{j})"
Now, if x>>a
so "a^2=0"
"E=\\dfrac{\\lambda }{4\\pi \\epsilon_ox^2}"
if x=a
"E=\\dfrac{\\lambda a}{8\\pi \\epsilon_ox^3}"
Comments
Leave a comment