Answer to Question #113493 in Electricity and Magnetism for ALI

Question #113493
Positive charge Q is distributed uniformly along the positive y-axis between y = 0 and y = a. A point P lies on the positive x-axis, a distance x from the origin (see figure)
(a) Calculate the x and y-components of the electric field produced by the charge distribution Q at points on the positive x-axis.
(b) Show that if x≫a
E_x ≅Q/(4πε_0 x^2 )
E_y ≅- Qa/(8πε_0 x^3 )
Explain why this result is obtained
1
Expert's answer
2020-05-04T12:43:23-0400

As per the given question,

here i suppose "r_o=x"

a)

let the linear charge density "=\\lambda"



Let the length of the rod is l and the total charge distributed on the rod is Q.

"dE=\\dfrac{dQ}{4\\pi \\epsilon_o r^2}"


"dE=\\dfrac{\\lambda da}{4\\pi \\epsilon_o x^2}"


"\\cos\\theta=\\dfrac{r_o}{r}"

"r=r_o\\sec\\theta"

"dE=\\dfrac{\\lambda da}{4\\pi \\epsilon_o r_o^2 \\sec^2\\theta}"

"\\tan \\theta=\\dfrac{a}{r_o}"

"da=r_o sec^2\\theta d\\theta"

"dE=\\dfrac{\\lambda da}{4\\pi \\epsilon_o r_o^2\\sec^\\theta}"

"\\Rightarrow dE=\\dfrac{\\lambda r_o \\sec^2\\theta d\\theta}{4\\pi \\epsilon_o r_o^2 \\sec^2\\theta}"

Now, taking x component and y component

"dE=\\dfrac{\\lambda d\\theta}{4\\pi\\epsilon_o r_o}(\\cos\\theta \\hat{i}+\\sin\\theta \\hat{j})"

Now, integrating both side

"\\int _0^EE=\\dfrac{\\lambda}{4\\pi \\epsilon_o r_o}(\\int_o^\\theta \\cos\\theta d\\theta\n\\hat{i}+\\int_o^\\theta \\sin\\theta d\\theta\\hat{j})"

"E=\\dfrac{\\lambda}{4\\pi \\epsilon_o r_o}(\\sin \\theta \\hat{i}-(\\cos\\theta+1)\\hat{j})"

now we can write sin and cos in the form of x,

"E=\\dfrac{\\lambda}{4\\pi \\epsilon_o x}(\\dfrac{x}{\\sqrt{x^2+a^2}} \\hat{i}-(\\dfrac{a}{\\sqrt{x^2+a^2}}+1)\\hat{j})"

Now, if x>>a

so "a^2=0"

"E=\\dfrac{\\lambda }{4\\pi \\epsilon_ox^2}"

if x=a

"E=\\dfrac{\\lambda a}{8\\pi \\epsilon_ox^3}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS