Problem: "I_1=2A; I_2=9A; P_1=(40,60)cm; P_2=(40,-30)cm;\\vec H(25,0)=?"
Solution: For an infinitely long conductor the magnetic field at any point "r" is determined by the formula "(1) \\vec H=\\frac{1}{4\\pi}\\frac{2 I \\cdot \\hat l \u00d7\\hat r}{r}" where "\\hat l" -unit vector along direction of current in conductor, "\\hat r" -unit vector from conductor to point of field to determine. In the figure 1 of https://upload.cc/i1/2020/04/13/smpaLD.jpg, the direction of current in the conductors is shown by a cross, so the current is directed down from the drawing plane in the direction against the Z axis, so "\\hat l=-\\hat k". A magnetic field of system of currents is a vector sum of magnetic fields of every currents. Thus we find the magnetic field of first conductor. Find "\\vec r_1=25 \\hat i -40\\hat i - 60 \\hat j=-15 \\hat i-60\\hat j"
(2) "r_1=\\sqrt{15^2+60^2} cm=61.8 cm=0.618 m; \\hat r_1=\\frac {\\vec r_1}{r_1}=-\\frac{15 \\hat i +60 \\hat j}{61.8}=-0.24 \\hat i-0.97 \\hat j"
Vector product can be calculated using the rule "\\hat k \u00d7\\hat i=\\hat j" and "\\hat k \u00d7\\hat j=-\\hat i" . Substitute (2) to (1) we determine the magnetic field of first conductor
(3) "\\vec H_1=\\frac{1}{4\\pi}\\frac{2I_1 (-\\hat k) \u00d7(-0.24 \\hat i-0.97 \\hat j)}{r_1}=\\frac{1}{4\\pi}\\frac{4A }{0.618 m}\\cdot (-0.97 \\hat i+0.24\\hat j)=\\\\=0.515\\cdot (-0.97 \\hat i+0.24\\hat j)Am^{-1}=(-0.500\\hat i +0,124 \\hat j )Am^{-1}"
For second conductor we have
"\\vec r_2=25\\hat i -40 \\hat i + 30\\hat j=-15 \\hat i +30 \\hat j; r_2=\\sqrt{15^2+30^2}=33.5 cm=0.335m"
"\\hat r_2=\\frac{\\vec r_2}{r_2}=\\frac{-15 \\hat i +30 \\hat j}{33.5}=-0.447 \\hat i+0.894 \\hat j"
(4) "\\vec H_2=\\frac{1}{4\\pi}\\frac{2I_2 (-\\hat k) \u00d7(-0.447 \\hat i+0.894 \\hat j)}{r_2}=\\frac{1}{4\\pi}\\frac{18A }{0.335 m}\\cdot (0.894 \\hat i+0.447\\hat j)=\\\\=4.28\\cdot (0.894 \\hat i+0.447\\hat j)Am^{-1}=(3.82\\hat i +1.91 \\hat j)Am^{-1}"
The sketch explains the resulting picture of the fields
Now we can get overall magnetic field
"\\vec H=\\vec H_1+\\vec H_2=(-0.500\\hat i +0,124 \\hat j )Am^{-1}+(3.82\\hat i +1.91 \\hat j)Am^{-1}=\\\\=(3.32 \\hat i+2.03 \\hat j) Am^{-1}"
Answer: The net magnetic field at the point (25,0) in unit vector notation is "(3.32 \\hat i+2.03 \\hat j) Am^{-1}"
Comments
Leave a comment