Question #109422
[img]https://upload.cc/i1/2020/04/13/smpaLD.jpg[/img]




question in photo , R=4
1
Expert's answer
2020-04-15T10:16:18-0400

Problem: I1=2A;I2=9A;P1=(40,60)cm;P2=(40,30)cm;H(25,0)=?I_1=2A; I_2=9A; P_1=(40,60)cm; P_2=(40,-30)cm;\vec H(25,0)=?

Solution: For an infinitely long conductor the magnetic field at any point rr is determined by the formula (1)H=14π2Il^×r^r(1) \vec H=\frac{1}{4\pi}\frac{2 I \cdot \hat l ×\hat r}{r} where l^\hat l -unit vector along direction of current in conductor, r^\hat r -unit vector from conductor to point of field to determine. In the figure 1 of https://upload.cc/i1/2020/04/13/smpaLD.jpg, the direction of current in the conductors is shown by a cross, so the current is directed down from the drawing plane in the direction against the Z axis, so l^=k^\hat l=-\hat k. A magnetic field of system of currents is a vector sum of magnetic fields of every currents. Thus we find the magnetic field of first conductor. Find r1=25i^40i^60j^=15i^60j^\vec r_1=25 \hat i -40\hat i - 60 \hat j=-15 \hat i-60\hat j

(2) r1=152+602cm=61.8cm=0.618m;r^1=r1r1=15i^+60j^61.8=0.24i^0.97j^r_1=\sqrt{15^2+60^2} cm=61.8 cm=0.618 m; \hat r_1=\frac {\vec r_1}{r_1}=-\frac{15 \hat i +60 \hat j}{61.8}=-0.24 \hat i-0.97 \hat j

Vector product can be calculated using the rule k^×i^=j^\hat k ×\hat i=\hat j and k^×j^=i^\hat k ×\hat j=-\hat i . Substitute (2) to (1) we determine the magnetic field of first conductor

(3) H1=14π2I1(k^)×(0.24i^0.97j^)r1=14π4A0.618m(0.97i^+0.24j^)==0.515(0.97i^+0.24j^)Am1=(0.500i^+0,124j^)Am1\vec H_1=\frac{1}{4\pi}\frac{2I_1 (-\hat k) ×(-0.24 \hat i-0.97 \hat j)}{r_1}=\frac{1}{4\pi}\frac{4A }{0.618 m}\cdot (-0.97 \hat i+0.24\hat j)=\\=0.515\cdot (-0.97 \hat i+0.24\hat j)Am^{-1}=(-0.500\hat i +0,124 \hat j )Am^{-1}

For second conductor we have

r2=25i^40i^+30j^=15i^+30j^;r2=152+302=33.5cm=0.335m\vec r_2=25\hat i -40 \hat i + 30\hat j=-15 \hat i +30 \hat j; r_2=\sqrt{15^2+30^2}=33.5 cm=0.335m

r^2=r2r2=15i^+30j^33.5=0.447i^+0.894j^\hat r_2=\frac{\vec r_2}{r_2}=\frac{-15 \hat i +30 \hat j}{33.5}=-0.447 \hat i+0.894 \hat j

(4) H2=14π2I2(k^)×(0.447i^+0.894j^)r2=14π18A0.335m(0.894i^+0.447j^)==4.28(0.894i^+0.447j^)Am1=(3.82i^+1.91j^)Am1\vec H_2=\frac{1}{4\pi}\frac{2I_2 (-\hat k) ×(-0.447 \hat i+0.894 \hat j)}{r_2}=\frac{1}{4\pi}\frac{18A }{0.335 m}\cdot (0.894 \hat i+0.447\hat j)=\\=4.28\cdot (0.894 \hat i+0.447\hat j)Am^{-1}=(3.82\hat i +1.91 \hat j)Am^{-1}

The sketch explains the resulting picture of the fields



Now we can get overall magnetic field

H=H1+H2=(0.500i^+0,124j^)Am1+(3.82i^+1.91j^)Am1==(3.32i^+2.03j^)Am1\vec H=\vec H_1+\vec H_2=(-0.500\hat i +0,124 \hat j )Am^{-1}+(3.82\hat i +1.91 \hat j)Am^{-1}=\\=(3.32 \hat i+2.03 \hat j) Am^{-1}

Answer: The net magnetic field at the point (25,0) in unit vector notation is (3.32i^+2.03j^)Am1(3.32 \hat i+2.03 \hat j) Am^{-1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS