Given:- Two point charges on the y-axis
q1 = - 1.50 nC at ( y1 = - 0.600 m)
q2 = +3.20 nC at the origin (y2 = 0m)
q3 = +5.00 nC located at (y3= -0.400 m)
Find the total force (F) and (magnitude and direction)
Now,
"\\\\From\\,Coulomb's\\,law\\\\[5pt]\nF=K\\frac{|q_{1}q_{2}|}{r^{2}}\\\\[5pt]\nThe\\,force\\,exerted\\,by\\,the\\,first\\,charge\\,on\\,the\\,third\\,one\\\\[5pt]\nr_{1}=y_{3}-y_{1}=-0.4m-(-0.6m)=0.2m\\\\[5pt]\n\\\\The\\,force\\,is\\, attractive\\, in\\, the\\,negative \\,y\\,axis\\\\ \nF_{1}=K\\frac{|q_{1}q_{2}|}{r^{2}}\\\\[5pt]\n\\\\F_{1}=\\frac{8.987\\times 10^{9}N.m^{2}\/C^{2}|(-1.5\\times 10^{-9}C)(5\\times 10^{-9}C)|}{(0.2m)^{2}}\\\\[5pt]\nF_{1}=1.685\\times 10^{-6}N\\\\[5pt]\nNow,\n\\\\The\\,force\\,exerted\\,by\\,the\\,second\\,charge\\,on\\,the\\,third\\,one,\n\\\\r_{2}=y_{3}-y_{2}=-0.4m-0m=-0.4m\\\\[5pt]\n\\\\The\\,force\\,is\\, repulsive\\, in\\, the\\,negative \\,y\\,axis\\\\ \\\\F_{2}=K\\frac{|q_{2}q_{3}|}{r^{2}}\\\\[5pt]\nF_{2}=\\frac{8.987\\times 10^{9}N.m^{2}\/C^{2}|(3.2\\times 10^{-9}C)(5\\times 10^{-9}C)|}{(-0.4m)^{2}}\\\\[5pt]\nF_{1}=8.99\\times 10^{-7}N\\\\[5pt]\ntherefore,\\\\\nTotal\\,force\\,(F)\\\\[5pt]\n\\\\F=F_{1}+F_{2}\\\\[5pt]\nF=1.685\\times 10^{-6}N+8.99\\times 10^{-7}N\\\\[5pt]\nF=2.59\\times 10^{-6}N\\\\[5pt]\nDirection:-(The \\,negative\\,y\\,direction)"
Comments
Leave a comment