"\\phi=\\phi_1+\\phi_2+\\phi_3+\\phi_4"
For two point charges "\\phi_1=\\phi_2=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q}{r}=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{q}{(d\/\\cos30\u00b0)}="
"=\\frac{1}{4\\cdot3.14\\cdot8.85\\cdot10^{-12}}\\cdot\\frac{2\\cdot10^{-9}}{(0.1\/\\cos30\u00b0)}\\approx156" "V"
For the linear rod
"\\phi_3=\\frac{\\lambda}{4\\pi\\epsilon_0}\\cdot \\ln{\\frac{b+\\sqrt{4a^2+b^2} }{-b+\\sqrt{4a^2+b^2}}}=\\frac{-10\\cdot10^{-9}}{4\\cdot3.14\\cdot8.85\\cdot10^{-12}}\\cdot \\ln{\\frac{0.08+\\sqrt{4\\cdot0.05^2+0.08^2} }{-0.08+\\sqrt{4\\cdot 0.05^2+0.08^2}}}\\approx-132" "V"
For the thin circular rod
"\\phi_4=\\frac{1}{4\\pi\\epsilon_0}\\cdot\\frac{2\\pi\\cdot R\\cdot \\lambda}{R}=\\frac{\\lambda}{2\\epsilon_0}=\\frac{5\\cdot10^{-9}}{2\\cdot8.85\\cdot10^{-12}}\\approx282" "V"
"\\phi=\\phi_1+\\phi_2+\\phi_3+\\phi_4=156+156-132+282=462" "V"
Comments
Leave a comment