Answer to Question #106257 in Electricity and Magnetism for havefun7741

Question #106257
[img]https://upload.cc/i1/2020/03/23/iuJgmO.jpg[/img]



the question is in picture,R=4
1
Expert's answer
2020-03-30T07:57:28-0400

ϕ=ϕ1+ϕ2+ϕ3+ϕ4\phi=\phi_1+\phi_2+\phi_3+\phi_4


For two point charges ϕ1=ϕ2=14πϵ0qr=14πϵ0q(d/cos30°)=\phi_1=\phi_2=\frac{1}{4\pi\epsilon_0}\cdot\frac{q}{r}=\frac{1}{4\pi\epsilon_0}\cdot\frac{q}{(d/\cos30°)}=


=143.148.8510122109(0.1/cos30°)156=\frac{1}{4\cdot3.14\cdot8.85\cdot10^{-12}}\cdot\frac{2\cdot10^{-9}}{(0.1/\cos30°)}\approx156 VV


For the linear rod


ϕ3=λ4πϵ0lnb+4a2+b2b+4a2+b2=1010943.148.851012ln0.08+40.052+0.0820.08+40.052+0.082132\phi_3=\frac{\lambda}{4\pi\epsilon_0}\cdot \ln{\frac{b+\sqrt{4a^2+b^2} }{-b+\sqrt{4a^2+b^2}}}=\frac{-10\cdot10^{-9}}{4\cdot3.14\cdot8.85\cdot10^{-12}}\cdot \ln{\frac{0.08+\sqrt{4\cdot0.05^2+0.08^2} }{-0.08+\sqrt{4\cdot 0.05^2+0.08^2}}}\approx-132 VV



For the thin circular rod


ϕ4=14πϵ02πRλR=λ2ϵ0=510928.851012282\phi_4=\frac{1}{4\pi\epsilon_0}\cdot\frac{2\pi\cdot R\cdot \lambda}{R}=\frac{\lambda}{2\epsilon_0}=\frac{5\cdot10^{-9}}{2\cdot8.85\cdot10^{-12}}\approx282 VV


ϕ=ϕ1+ϕ2+ϕ3+ϕ4=156+156132+282=462\phi=\phi_1+\phi_2+\phi_3+\phi_4=156+156-132+282=462 VV






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment