ϕ = ϕ 1 + ϕ 2 + ϕ 3 + ϕ 4 \phi=\phi_1+\phi_2+\phi_3+\phi_4 ϕ = ϕ 1 + ϕ 2 + ϕ 3 + ϕ 4
For two point charges ϕ 1 = ϕ 2 = 1 4 π ϵ 0 ⋅ q r = 1 4 π ϵ 0 ⋅ q ( d / cos 30 ° ) = \phi_1=\phi_2=\frac{1}{4\pi\epsilon_0}\cdot\frac{q}{r}=\frac{1}{4\pi\epsilon_0}\cdot\frac{q}{(d/\cos30°)}= ϕ 1 = ϕ 2 = 4 π ϵ 0 1 ⋅ r q = 4 π ϵ 0 1 ⋅ ( d / c o s 30° ) q =
= 1 4 ⋅ 3.14 ⋅ 8.85 ⋅ 1 0 − 12 ⋅ 2 ⋅ 1 0 − 9 ( 0.1 / cos 30 ° ) ≈ 156 =\frac{1}{4\cdot3.14\cdot8.85\cdot10^{-12}}\cdot\frac{2\cdot10^{-9}}{(0.1/\cos30°)}\approx156 = 4 ⋅ 3.14 ⋅ 8.85 ⋅ 1 0 − 12 1 ⋅ ( 0.1/ c o s 30° ) 2 ⋅ 1 0 − 9 ≈ 156 V V V
For the linear rod
ϕ 3 = λ 4 π ϵ 0 ⋅ ln b + 4 a 2 + b 2 − b + 4 a 2 + b 2 = − 10 ⋅ 1 0 − 9 4 ⋅ 3.14 ⋅ 8.85 ⋅ 1 0 − 12 ⋅ ln 0.08 + 4 ⋅ 0.0 5 2 + 0.0 8 2 − 0.08 + 4 ⋅ 0.0 5 2 + 0.0 8 2 ≈ − 132 \phi_3=\frac{\lambda}{4\pi\epsilon_0}\cdot \ln{\frac{b+\sqrt{4a^2+b^2} }{-b+\sqrt{4a^2+b^2}}}=\frac{-10\cdot10^{-9}}{4\cdot3.14\cdot8.85\cdot10^{-12}}\cdot \ln{\frac{0.08+\sqrt{4\cdot0.05^2+0.08^2} }{-0.08+\sqrt{4\cdot 0.05^2+0.08^2}}}\approx-132 ϕ 3 = 4 π ϵ 0 λ ⋅ ln − b + 4 a 2 + b 2 b + 4 a 2 + b 2 = 4 ⋅ 3.14 ⋅ 8.85 ⋅ 1 0 − 12 − 10 ⋅ 1 0 − 9 ⋅ ln − 0.08 + 4 ⋅ 0.0 5 2 + 0.0 8 2 0.08 + 4 ⋅ 0.0 5 2 + 0.0 8 2 ≈ − 132 V V V
For the thin circular rod
ϕ 4 = 1 4 π ϵ 0 ⋅ 2 π ⋅ R ⋅ λ R = λ 2 ϵ 0 = 5 ⋅ 1 0 − 9 2 ⋅ 8.85 ⋅ 1 0 − 12 ≈ 282 \phi_4=\frac{1}{4\pi\epsilon_0}\cdot\frac{2\pi\cdot R\cdot \lambda}{R}=\frac{\lambda}{2\epsilon_0}=\frac{5\cdot10^{-9}}{2\cdot8.85\cdot10^{-12}}\approx282 ϕ 4 = 4 π ϵ 0 1 ⋅ R 2 π ⋅ R ⋅ λ = 2 ϵ 0 λ = 2 ⋅ 8.85 ⋅ 1 0 − 12 5 ⋅ 1 0 − 9 ≈ 282 V V V
ϕ = ϕ 1 + ϕ 2 + ϕ 3 + ϕ 4 = 156 + 156 − 132 + 282 = 462 \phi=\phi_1+\phi_2+\phi_3+\phi_4=156+156-132+282=462 ϕ = ϕ 1 + ϕ 2 + ϕ 3 + ϕ 4 = 156 + 156 − 132 + 282 = 462 V V V
Comments