Polarization vector
P=χϵ0EP=\chi \epsilon_0 EP=χϵ0E
ϵ=1+χ→χ=ϵ−1=4−1=3\epsilon=1+\chi \to \chi=\epsilon-1=4-1=3ϵ=1+χ→χ=ϵ−1=4−1=3
P=χϵ0E=3⋅8.85⋅10−12⋅100=26.55⋅10−10F⋅Vm2P=\chi \epsilon_0 E=3\cdot 8.85\cdot 10^{-12}\cdot 100=26.55\cdot 10^{-10} \frac{F\cdot V}{m^2}P=χϵ0E=3⋅8.85⋅10−12⋅100=26.55⋅10−10m2F⋅V
Molecular/atomic polarisability
P=Nαϵ0E→α=PNϵ0E=26.55⋅10−106.02⋅1023⋅8.85⋅10−12⋅100=0.5⋅10−23m3P=N\alpha \epsilon_0 E \to \alpha=\frac{P}{N \epsilon_0 E}=\frac{26.55\cdot 10^{-10}}{6.02\cdot 10^{23}\cdot 8.85\cdot 10^{-12}\cdot 100}=0.5\cdot 10^{-23} m^3P=Nαϵ0E→α=Nϵ0EP=6.02⋅1023⋅8.85⋅10−12⋅10026.55⋅10−10=0.5⋅10−23m3
Refractive index
n=ϵμ=4⋅0.99=1.99n=\sqrt{\epsilon\mu}=\sqrt{4\cdot 0.99}=1.99n=ϵμ=4⋅0.99=1.99
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments