Question #103175
The capacitance of a parallel plate capacitor is increased by a factor of 7 when a dielectric
material fills the space between its plates. What is the relative permitivity of the dielectric
material? If this material is placed in between the plates of a cylindrical capacitor of outer
and inner radii 12 cm and 10 cm, respectively, calculate the capacitance per unit length of
the cylindrical capacitor.
1
Expert's answer
2020-02-20T09:11:48-0500


For a flat capacitor, we write

C1=ϵ1ϵ0SdC_1=\frac{\epsilon_1 \cdot \epsilon_0 \cdot S}{d}

C2=ϵ2ϵ0SdC_2=\frac{\epsilon_2 \cdot \epsilon_0 \cdot S}{d}

Where ϵ1=1\epsilon_1=1 C2=7C1C_2=7 \cdot C_1

Then write

ϵ1=C1dϵ0S\epsilon_1=\frac{C_1d }{\epsilon_0 \cdot S}

ϵ2=C2dϵ0S\epsilon_2=\frac{C_2d }{\epsilon_0 \cdot S}

ϵ2ϵ1=C2dϵ0SC1dϵ0S=C2C1=7C1C1=7\frac{\epsilon_2 }{\epsilon_1 }=\frac{\frac{C_2d }{\epsilon_0 \cdot S}}{\frac{C_1d }{\epsilon_0 \cdot S} }=\frac{C_2 }{C_1 }=\frac{7C_1 }{C_1 }=7

Then ϵ=7\epsilon =7

Material: mica or glass



For a cylindrical capacitor, we write


C=2πϵ0ϵlln(r2/r1)=23.148.85101271ln(0.12/0.1)=2.135109F=2.135nFC=\frac{2\pi\epsilon_0\epsilon l}{ln(r_2/r_1) }=\frac{2\cdot 3.14 \cdot 8.85 \cdot 10^{-12} \cdot 7 \cdot 1 }{ln(0.12/0.1) }=2.135 \cdot 10^{-9} F=2.135 nF


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS