For a flat capacitor, we write
"C_1=\\frac{\\epsilon_1 \\cdot \\epsilon_0 \\cdot S}{d}"
"C_2=\\frac{\\epsilon_2 \\cdot \\epsilon_0 \\cdot S}{d}"
Where "\\epsilon_1=1" "C_2=7 \\cdot C_1"
Then write
"\\epsilon_1=\\frac{C_1d }{\\epsilon_0 \\cdot S}"
"\\epsilon_2=\\frac{C_2d }{\\epsilon_0 \\cdot S}"
"\\frac{\\epsilon_2 }{\\epsilon_1 }=\\frac{\\frac{C_2d }{\\epsilon_0 \\cdot S}}{\\frac{C_1d }{\\epsilon_0 \\cdot S} }=\\frac{C_2 }{C_1 }=\\frac{7C_1 }{C_1 }=7"
Then "\\epsilon =7"
Material: mica or glass
For a cylindrical capacitor, we write
"C=\\frac{2\\pi\\epsilon_0\\epsilon l}{ln(r_2\/r_1) }=\\frac{2\\cdot 3.14 \\cdot 8.85 \\cdot 10^{-12} \\cdot 7 \\cdot 1 }{ln(0.12\/0.1) }=2.135 \\cdot 10^{-9} F=2.135 nF"
Comments
Leave a comment