Question #101728
Two particles carrying equal charges move parallel to each other with speed 150 km/s. If F(1) and F(2) are magnetic and electric forces between two charged particles then the ratio of F(1)/ F(2) is
Ans 25×10^-8
1
Expert's answer
2020-01-24T08:22:59-0500

q1=q2q_1=q_2

v1=v2=v=150×103  m/sv_1=v_2=v=150\times 10^3 \; m/s

c2=8.98×1016  m2/s2c^2=8.98 \times 10^{16} \; m^2/s^2

F1F_1 magnetic force

F2F_2 electric force


F1F2?\frac{F_1}{F_2} -?


Solution:

Suppose that q1>0,q2>0q_1>0, q_2>0 ( if   q1<0,q2<0\;q_1<0, q_2<0 solution will be similar)

Electric force:     F2=kq1q2r2,k=14πε0\;\; F_2=k\frac{q_1 q_2 }{r^2}, \quad k=\frac{1}{4\pi \varepsilon _0}

Magnetic force:    F1=q2v2B1sinθ,θ=90\;\;F_1=q_2 v_2 B_1\sin\theta, \quad \theta =90^{\circ} angle between v2v_2 and B1B_1

    F1=q2vB1=q2vμ04πq1vr2=μ04πq1q2v2r2\;\;F_1=q_2v B_1=q_2v\frac{\mu _0}{4\pi}\frac{q_1v}{r^2}=\frac{\mu _0}{4\pi}\frac{q_1 q_2 v^2}{r^2}


F1F2=μ0ε0v2=[  c2=1ε0μ0  ]=v2c2\frac{F_1}{F_2}=\mu_0 \varepsilon_0 v^2 =\lbrack \; c^2=\frac{1}{\varepsilon_0 \mu_0} \; \rbrack= \frac{v^2}{c^2}

F1F2=(150×103)28.98×1016=25×108\frac{F_1}{F_2}= \frac{(150\times 10^3)^2}{8.98\times 10^{16}}=25\times 10^{-8}


Answer: 25×108.25\times 10^{-8}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS