Part a.
The effective voltage is:
V r m s = V m a x 2 = 150 V 2 = 106.1 V V_{rms}=\frac{V_{max}}{\sqrt{2}}=\frac{150V}{\sqrt{2}}=106.1V V r m s = 2 V ma x = 2 150 V = 106.1 V
Part b
The effective current is:
I r m s = I m a x 2 = 0.7 A 2 = 0.49 A I_{rms}=\frac{I_{max}}{\sqrt{2}}=\frac{0.7A}{\sqrt{2}}=0.49A I r m s = 2 I ma x = 2 0.7 A = 0.49 A
Note:
The power developed by the bulb is:P = V r m s ∗ I r m s P=V_{rms}*I_{rms} P = V r m s ∗ I r m s
Where:
Voltage V r m s = 106.1 V V_{rms}=106.1V V r m s = 106.1 V Current I r m s = 0.49 A I_{rms}=0.49A I r m s = 0.49 A
Numerically evaluating: P = 106.1 V ∗ 0.49 A = 51.99 W ≈ 52.0 W P=106.1V*0.49A=51.99W\approx 52.0W P = 106.1 V ∗ 0.49 A = 51.99 W ≈ 52.0 W
The operating power is below the nominal value of the bulb .
Part c
Resistance is calculated by applying Ohm's Law.
R = V r m s I r m s R=\frac{V_{rms}}{I_{rms}} R = I r m s V r m s
Where :
V r m s = 106.1 V V_{rms}=106.1V V r m s = 106.1 V
I r m s = 0.49 A I_{rms}=0.49A I r m s = 0.49 A
Numerically evaluating:
R = 106.1 V 0.49 A = 216.5 Ω R=\frac{106.1V}{0.49A}=216.5\Omega R = 0.49 A 106.1 V = 216.5Ω
The resistance of the bulb in operation is
R = 216.5 Ω R=216.5\Omega R = 216.5Ω
Comments