V=VG=VR1, I=IG+IR1V=V_G=V_{R1}, \space I=I_G+I_{R1}V=VG=VR1, I=IG+IR1
IG=151I, IR1=5051II_G=\frac {1}{51} I, \space I_{R1}=\frac {50}{51}IIG=511I, IR1=5150I
VG=IGRG=VR1=IR1R1V_G=I_G R_G=V_{R1}=I_{R1}R1VG=IGRG=VR1=IR1R1
RG=IR1IGR1=50R1(1)R_G=\frac{I_{R1}}{I_G}R1=50R1 \qquad (1)RG=IGIR1R1=50R1(1)
V=VG+VR2, I=IG=IR2V=V_G+V_{R2}, \space I=I_G=I_{R2}V=VG+VR2, I=IG=IR2
VG=111V, VR2=1011VV_G=\frac {1}{11}V, \space V_{R2}=\frac {10}{11}VVG=111V, VR2=1110V
IG=VGRG=IR2=VR2R2I_G=\frac{V_G}{R_G}=I_{R2}=\frac{V_{R2}}{R2}IG=RGVG=IR2=R2VR2
RG=VGVR2R2=110R2(2)R_G=\frac{V_G}{V_{R2}}R2=\frac{1}{10}R2 \qquad (2)RG=VR2VGR2=101R2(2)
from (1) and (2)
50R1=110R2 → R2R1=50050R1=\frac{1}{10}R2 \space \rightarrow \space \frac{R2}{R1}=50050R1=101R2 → R1R2=500
Answer: R2/R1=500
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment