We have
And we need: light velocity; electron rest mass; electron charge
"c=3\\cdot 0^8 (m\/s); m_0=9.1\\cdot 10^{-31} (kg); q=-1.6\\cdot 10^{-19} (C)"Comparing the speed of the electron with the speed of light
"\\frac{93\\cdot 10^6 }{3\\cdot 10^8}\\cdot 100 = 30"We see 30 percents of the light velocity, Then this is a relativistic electron.
Kinetic energy in relativistic theory
"W=m_0c^2(\\frac{1}{\\sqrt{1-\\frac{v^2}{c^2}}}-1)"For initial condition kinetic energy of electron
"W_1=9.1\\cdot 10^{-31}\\cdot (3\\cdot 10^8)^2\\cdot(\\frac{1}{\\sqrt{1-\\frac{(93\\cdot 10^6)^2}{(3\\cdot 10^8)^2}}}-1)=4.244*10^{-15} (J)"When electron travelling trough electric field, the energy change for
"\\Delta W=q(\\phi_1-\\phi_2)""\\Delta W=-1.6\\cdot 10^{-19} \\cdot (17000-6000)=-1.76\\cdot 10^{-15} (J)"The kinetic energy decreases
"W_2=W_1-\\Delta W""W_2=4.244\\cdot 10^{-15} - 1.76 \\cdot 10^{-15} = 2.484\\cdot 10^{-15} (J)"And electron velocity from kinetic energy equal
"v_2=c\\sqrt{1-\\frac{1}{(\\frac{W_2}{m_0\\cdot c^2}+1)^2}}""v_2=72.25\\cdot 10^6 (m\/s)"
Change velocity
"\\Delta v=v_2-v_1""\\Delta v= (72.25-93)\\cdot 10^6=-20.75 (Mm\/s)"Answer: velocity decreases on 20.75 Mm/s
Comments
Leave a comment