Question #88045
An isolated free electron is traveling through an electric field from some initial point where it's coulombic potential energy per unit charge (voltage) is 17KJ/C and velocity = 93Mm/s to some final point where it's coulombic potential energy per unit charge is 6KJ/C. Determine the charge in velocity of the electron . Neglect gravitational forces. What is the solution please.
1
Expert's answer
2019-04-30T10:40:02-0400

We have


ϕ1=17000(V);ϕ2=6000(V);v1=93106(m/s)\phi_1=17000 (V); \phi_2 =6000 (V); v_1=93\cdot10^6 (m/s)


And we need: light velocity; electron rest mass; electron charge

c=308(m/s);m0=9.11031(kg);q=1.61019(C)c=3\cdot 0^8 (m/s); m_0=9.1\cdot 10^{-31} (kg); q=-1.6\cdot 10^{-19} (C)

Comparing the speed of the electron with the speed of light

931063108100=30\frac{93\cdot 10^6 }{3\cdot 10^8}\cdot 100 = 30

We see 30 percents of the light velocity, Then this is a relativistic electron.

Kinetic energy in relativistic theory

W=m0c2(11v2c21)W=m_0c^2(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1)


For initial condition kinetic energy of electron

W1=9.11031(3108)2(11(93106)2(3108)21)=4.2441015(J)W_1=9.1\cdot 10^{-31}\cdot (3\cdot 10^8)^2\cdot(\frac{1}{\sqrt{1-\frac{(93\cdot 10^6)^2}{(3\cdot 10^8)^2}}}-1)=4.244*10^{-15} (J)


When electron travelling trough electric field, the energy change for

ΔW=q(ϕ1ϕ2)\Delta W=q(\phi_1-\phi_2)ΔW=1.61019(170006000)=1.761015(J)\Delta W=-1.6\cdot 10^{-19} \cdot (17000-6000)=-1.76\cdot 10^{-15} (J)

The kinetic energy decreases

W2=W1ΔWW_2=W_1-\Delta WW2=4.24410151.761015=2.4841015(J)W_2=4.244\cdot 10^{-15} - 1.76 \cdot 10^{-15} = 2.484\cdot 10^{-15} (J)

And electron velocity from kinetic energy equal

v2=c11(W2m0c2+1)2v_2=c\sqrt{1-\frac{1}{(\frac{W_2}{m_0\cdot c^2}+1)^2}}

v2=72.25106(m/s)v_2=72.25\cdot 10^6 (m/s)

Change velocity

Δv=v2v1\Delta v=v_2-v_1Δv=(72.2593)106=20.75(Mm/s)\Delta v= (72.25-93)\cdot 10^6=-20.75 (Mm/s)

Answer: velocity decreases on 20.75 Mm/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS