Question #86129
Solve the differential equation: d^2y/dx^2+dy/dx+y=3sin3x
1
Expert's answer
2019-03-12T11:10:49-0400

Using Lagrange method (variation of constants),


A(x)=1Wy2(x)3sin(3x)dx=23ex2sin3x2sin3xdxA(x) = -\int \frac{1}{W} y_2(x) 3 \sin(3x)dx = -2\sqrt{3} \int e^{\frac{x}{2}} \sin{\frac{\sqrt{3}x}{2}}\sin{3x}dx

B(x)=1Wy1(x)3sin(3x)dx=23ex2cos3x2sin3xdxB(x) = \int \frac{1}{W} y_1(x) 3 \sin(3x)dx = 2\sqrt{3} \int e^{\frac{x}{2}} \cos{\frac{\sqrt{3}x}{2}}\sin{3x}dx

A(x)=3ex/2((36)sin(12(36)x)+cos(12(36)x)6320+(3+6)sin(12(3+6)x)+cos(12(3+6)x)63+20A(x) = \sqrt{3}e^{x/2}\left(\frac{\left(\sqrt{3}-6\right) \sin \left(\frac{1}{2} \left(\sqrt{3}-6\right) x\right)+\cos \left(\frac{1}{2} \left(\sqrt{3}-6\right) x\right)}{6 \sqrt{3}-20}+\frac{\left(\sqrt{3}+6\right) \sin \left(\frac{1}{2} \left(\sqrt{3}+6\right) x\right)+\cos \left(\frac{1}{2} \left(\sqrt{3}+6\right) x\right)}{6 \sqrt{3}+20}\right.

B(x)=3ex/2(sin(12(3+6)x)(3+6)cos(12(3+6)x)63+20sin(3x3x2)+(36)cos(12(36)x)6320)B(x) = \sqrt{3} e^{x/2} \left(\frac{\sin \left(\frac{1}{2} \left(\sqrt{3}+6\right) x\right)-\left(\sqrt{3}+6\right) \cos \left(\frac{1}{2} \left(\sqrt{3}+6\right) x\right)}{6 \sqrt{3}+20}-\frac{\sin \left(3 x-\frac{\sqrt{3} x}{2}\right)+\left(\sqrt{3}-6\right) \cos \left(\frac{1}{2} \left(\sqrt{3}-6\right) x\right)}{6 \sqrt{3}-20}\right)

Substituting A(x) and B(x) to the general solution of the homogeneous eq. we get general solution of the nonhomogeneous eq.:


y(x)=c1ex2sin(3x2)+c2ex2cos(3x2)373(8sin(3x)+3cos(3x))y(x)= c_1e^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+c_2 e^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)-\frac{3}{73} (8 \sin (3 x)+3 \cos (3 x))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS