Solution.
q 1 = − 1.50 ⋅ 1 0 − 9 C ; q1=-1.50\sdot10^{-9} C; q 1 = − 1.50 ⋅ 1 0 − 9 C ;
q 2 = 3.20 ⋅ 1 0 − 9 C ; q2=3.20\sdot10^{-9} C; q 2 = 3.20 ⋅ 1 0 − 9 C ;
y = 6.00 m ; y=6.00 m; y = 6.00 m ;
q 3 = − 5.00 ⋅ 1 0 − 9 C ; ( 2.00 m ; − 4.00 m ) ; q3=-5.00\sdot10^{-9}C;
(2.00m;-4.00m); q 3 = − 5.00 ⋅ 1 0 − 9 C ; ( 2.00 m ; − 4.00 m ) ;
F − ? ; F-?; F − ? ;
F 13 = k q 1 q 3 r 13 2 ; F_{13}=k\dfrac{q_1q_3}{r_{13}^2}; F 13 = k r 13 2 q 1 q 3 ;
F 13 = 9 ⋅ 1 0 9 1.5 ⋅ 1 0 − 9 ⋅ 5.00 ⋅ 1 0 − 9 1 0 2 + 2 2 = 6.49 ⋅ 1 0 − 10 N ; F_{13}=9\sdot10^9\dfrac{1.5\sdot10^{-9}\sdot5.00\sdot10^{-9}}{10^2+2^2}=6.49\sdot10^{-10}N; F 13 = 9 ⋅ 1 0 9 1 0 2 + 2 2 1.5 ⋅ 1 0 − 9 ⋅ 5.00 ⋅ 1 0 − 9 = 6.49 ⋅ 1 0 − 10 N ;
F 23 = k q 2 q 3 r 23 2 ; F_{23}=k\dfrac{q_2q_3}{r_{23}^2}; F 23 = k r 23 2 q 2 q 3 ;
F 23 = 9 ⋅ 1 0 9 3.2 ⋅ 1 0 − 9 ⋅ 5.00 ⋅ 1 0 − 9 4 2 + 2 2 = 72 ⋅ 1 0 − 10 N ; F_{23}=9\sdot10^9\dfrac{3.2\sdot10^{-9}\sdot5.00\sdot10^{-9}}{4^2+2^2}=72\sdot10^{-10}N; F 23 = 9 ⋅ 1 0 9 4 2 + 2 2 3.2 ⋅ 1 0 − 9 ⋅ 5.00 ⋅ 1 0 − 9 = 72 ⋅ 1 0 − 10 N ;
F 13 x = F 13 ⋅ c o s α = 6.49 ⋅ 1 0 − 10 ⋅ 2 1 0 2 + 2 2 = 1.27 ⋅ 1 0 − 10 N ; F_{13x}=F_{13}\sdot cos\alpha=6.49\sdot10^{-10}\sdot\dfrac{2}{\sqrt{10^2+2^2}}=1.27\sdot10^{-10}N; F 13 x = F 13 ⋅ cos α = 6.49 ⋅ 1 0 − 10 ⋅ 1 0 2 + 2 2 2 = 1.27 ⋅ 1 0 − 10 N ;
F 13 y = F 13 ⋅ s i n α = 6.49 ⋅ 1 0 − 10 ⋅ 10 1 0 2 + 2 2 = 6.36 ⋅ 1 0 − 10 N ; F_{13y}=F_{13}\sdot sin\alpha=6.49\sdot10^{-10}\sdot\dfrac{10}{\sqrt{10^2+2^2}}=6.36\sdot10^{-10}N; F 13 y = F 13 ⋅ s in α = 6.49 ⋅ 1 0 − 10 ⋅ 1 0 2 + 2 2 10 = 6.36 ⋅ 1 0 − 10 N ;
F 23 x = F 23 ⋅ c o s α = 72 ⋅ 1 0 − 10 ⋅ 2 4 2 + 2 2 = 32.20 ⋅ 1 0 − 10 N ; F_{23x}=F_{23}\sdot cos\alpha=72\sdot10^{-10}\sdot\dfrac{2}{\sqrt{4^2+2^2}}=32.20\sdot10^{-10}N; F 23 x = F 23 ⋅ cos α = 72 ⋅ 1 0 − 10 ⋅ 4 2 + 2 2 2 = 32.20 ⋅ 1 0 − 10 N ;
F 23 y = F 23 ⋅ s i n α = 72 ⋅ 1 0 − 10 ⋅ 4 1 0 2 + 2 2 = 64.40 ⋅ 1 0 − 10 N ; F_{23y}=F_{23}\sdot sin\alpha=72\sdot10^{-10}\sdot\dfrac{4}{\sqrt{10^2+2^2}}=64.40\sdot10^{-10}N; F 23 y = F 23 ⋅ s in α = 72 ⋅ 1 0 − 10 ⋅ 1 0 2 + 2 2 4 = 64.40 ⋅ 1 0 − 10 N ;
F x = F 13 x − F 23 x = 1.27 ⋅ 1 0 − 10 − 32.20 ⋅ 1 0 − 10 = − 30.93 ⋅ 1 0 − 10 N ; F_x=F_{13x}-F_{23x}=1.27\sdot10^{-10}-32.20\sdot10^{-10}=-30.93\sdot10^{-10}N; F x = F 13 x − F 23 x = 1.27 ⋅ 1 0 − 10 − 32.20 ⋅ 1 0 − 10 = − 30.93 ⋅ 1 0 − 10 N ;
F y = F 23 y − F 13 y = 64.40 ⋅ 1 0 − 10 − 6.36 ⋅ 1 0 − 10 = 58.04 ⋅ 1 0 − 10 N ; F_{y}=F_{23y}-F_{13y}=64.40\sdot10^{-10}-6.36\sdot10^{-10}=58.04\sdot10^{-10}N; F y = F 23 y − F 13 y = 64.40 ⋅ 1 0 − 10 − 6.36 ⋅ 1 0 − 10 = 58.04 ⋅ 1 0 − 10 N ;
F = F x 2 + F y 2 = ( − 30.93 ⋅ 1 0 − 10 ) 2 + ( 58.04 ⋅ 1 0 − 10 ) 2 = 65.80 ⋅ 1 0 − 10 N ; F=\sqrt{F_{x}^2+F_{y}^2}=\sqrt{(-30.93\sdot10^{-10})^2+(58.04\sdot10^{-10})^2}=65.80\sdot10^{-10}N; F = F x 2 + F y 2 = ( − 30.93 ⋅ 1 0 − 10 ) 2 + ( 58.04 ⋅ 1 0 − 10 ) 2 = 65.80 ⋅ 1 0 − 10 N ;
t a n γ = 58.04 ⋅ 1 0 − 10 30.93 ⋅ 1 0 − 10 = 1.876 ; tan\gamma=\dfrac{58.04\sdot10^{-10}}{30.93\sdot10^{-10}}=1.876; t anγ = 30.93 ⋅ 1 0 − 10 58.04 ⋅ 1 0 − 10 = 1.876 ;
γ = 6 2 o o r 11 8 o ; \gamma=62^o or118^o; γ = 6 2 o or 11 8 o ;
Answer: F = 65.80 ⋅ 1 0 − 10 N , γ = 6 2 o o r 11 8 o . F=65.80\sdot 10^{-10}N, \gamma=62^o or 118^o. F = 65.80 ⋅ 1 0 − 10 N , γ = 6 2 o or 11 8 o .
Comments