if the change in resistance of copper wire on stretching is 4%, then its length is stretched by
Explanations & Calculations
R1=ρ.L1A1R2=ρ.L2A2R2=1.04R1L2L1=1.04.A2A1⋯(1)Vol=A1L1=A2L2A2A1=L1L2⋯(2)L2L1=1.04=1.02L2−L1L1×100%=2%\qquad\qquad \begin{aligned} \small R_1&=\small \rho.\frac{L_1}{A_1}\qquad\qquad R_2= \rho.\frac{L_2}{A_2}\\ \small R_2&=\small 1.04R_1\\ \small \frac{L_2}{L_1}&=\small 1.04.\frac{A_2}{A_1}\cdots(1)\\ \\ \small Vol=A_1L_1&=\small A_2L_2\\ \small \frac{A_2}{A_1}&=\small \frac{L_1}{L_2}\cdots(2)\\ \\ \small \frac{L_2}{L_1}&=\small \sqrt{1.04}\\ &=\small 1.02\\ \small \frac{L_2-L_1}{L_1}\times100\%&=\small 2\% \end{aligned}R1R2L1L2Vol=A1L1A1A2L1L2L1L2−L1×100%=ρ.A1L1R2=ρ.A2L2=1.04R1=1.04.A1A2⋯(1)=A2L2=L2L1⋯(2)=1.04=1.02=2%
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments