What capacitance when connected in series with a 500Ω resistor will limit the current
drawn from a 48-mV 465-kHz source to 20μA?
Solution;
The impedance of the current is;
Z=VI=Xc2+R2Z=\frac VI =\sqrt{X_c^2+R^2}Z=IV=Xc2+R2
Substitute for the known values;
Z=48×10−320×10−6=Xc2+5002Z=\frac{48×10^{-3}}{20×10^{-6}}=\sqrt{X_c^2+500^2}Z=20×10−648×10−3=Xc2+5002
2400=Xc2+50022400=\sqrt{X_c^2+500^2}2400=Xc2+5002
Xc=24002−5002X_c=\sqrt{2400^2-500^2}Xc=24002−5002
Xc=2347.34ΩX_c=2347.34\OmegaXc=2347.34Ω
But also;
Xc=12πfCX_c=\frac{1}{2πfC}Xc=2πfC1
C=12πfXc=12π×465000×2347.34C=\frac{1}{2πfX_c}=\frac{1}{2π×465000×2347.34}C=2πfXc1=2π×465000×2347.341
C=1.458×10−10=0.1458nFC=1.458×10^{-10}=0.1458nFC=1.458×10−10=0.1458nF
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments