Question #293315

A resistance of 12 ohms an Inductance of 0.15 Henry and a capacitance of 130 f are connected in series across a supply of 200 volts 50 He. Calculate the 1.impedenace 2.the current 3.powerfactor 4.phase angle between voltage and current and 5.powerconsumed

1
Expert's answer
2022-02-03T09:03:58-0500

Explanation & Calculations


XL=2πfLXC=12πfCXR=RZ=R+j(XCXL)\qquad\qquad \begin{aligned} \small X_L&=\small 2\pi f L\\ \small X_C&=\small \frac{1}{2\pi f C}\\ \small X_R&=\small R\\ \small Z&=\small R+j(X_C-X_L) \end{aligned}

1.

Z=R2+(XCXL)2(1)\qquad\qquad \begin{aligned} \small |Z|&=\small \sqrt{R^2+(X_C-X_L)^2}\qquad\cdots(1) \end{aligned}


2.

V=IZI=VZ=200R2+(XCXL)2(2)\qquad\qquad \begin{aligned} \small V&=\small IZ\\ \small I&=\small \frac{V}{Z}=\frac{200}{\sqrt{R^2+(X_C-X_L)^2}}\qquad\cdots(2) \end{aligned}


3.

IZcosϕ=IRcosϕ=RZ(3)\qquad\qquad \begin{aligned} \small IZ\cos\phi&=\small IR\\ \small \cos\phi&=\small \frac{R}{Z}\qquad\cdots(3) \end{aligned}


4.

cosϕ=RZϕ=cos1(RZ)(4)\qquad\qquad \begin{aligned} \small \cos\phi&=\small \frac{R}{Z}\\ \small \phi&=\small \cos^{-1}\Big(\frac{R}{Z}\Big)\qquad\cdots(4) \end{aligned}


5.

  • Power consumed is the active power.

P=I2R(5)\qquad\qquad \begin{aligned} \small P&=\small I^2R\qquad\cdots(5) \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS