Explanation & Calculations
X L = 2 π f L X C = 1 2 π f C X R = R Z = R + j ( X C − X L ) \qquad\qquad
\begin{aligned}
\small X_L&=\small 2\pi f L\\
\small X_C&=\small \frac{1}{2\pi f C}\\
\small X_R&=\small R\\
\small Z&=\small R+j(X_C-X_L)
\end{aligned} X L X C X R Z = 2 π f L = 2 π f C 1 = R = R + j ( X C − X L )
1.
∣ Z ∣ = R 2 + ( X C − X L ) 2 ⋯ ( 1 ) \qquad\qquad
\begin{aligned}
\small |Z|&=\small \sqrt{R^2+(X_C-X_L)^2}\qquad\cdots(1)
\end{aligned} ∣ Z ∣ = R 2 + ( X C − X L ) 2 ⋯ ( 1 )
2.
V = I Z I = V Z = 200 R 2 + ( X C − X L ) 2 ⋯ ( 2 ) \qquad\qquad
\begin{aligned}
\small V&=\small IZ\\
\small I&=\small \frac{V}{Z}=\frac{200}{\sqrt{R^2+(X_C-X_L)^2}}\qquad\cdots(2)
\end{aligned} V I = I Z = Z V = R 2 + ( X C − X L ) 2 200 ⋯ ( 2 )
3.
I Z cos ϕ = I R cos ϕ = R Z ⋯ ( 3 ) \qquad\qquad
\begin{aligned}
\small IZ\cos\phi&=\small IR\\
\small \cos\phi&=\small \frac{R}{Z}\qquad\cdots(3)
\end{aligned} I Z cos ϕ cos ϕ = I R = Z R ⋯ ( 3 )
4.
cos ϕ = R Z ϕ = cos − 1 ( R Z ) ⋯ ( 4 ) \qquad\qquad
\begin{aligned}
\small \cos\phi&=\small \frac{R}{Z}\\
\small \phi&=\small \cos^{-1}\Big(\frac{R}{Z}\Big)\qquad\cdots(4)
\end{aligned} cos ϕ ϕ = Z R = cos − 1 ( Z R ) ⋯ ( 4 )
5.
Power consumed is the active power. P = I 2 R ⋯ ( 5 ) \qquad\qquad
\begin{aligned}
\small P&=\small I^2R\qquad\cdots(5)
\end{aligned} P = I 2 R ⋯ ( 5 )
Comments