Question #287954

Merlinda is heating 2-kg water initially at 6.5 °C using a 100-Watt solar-powered heater. How long will it take (in seconds) to reach the boiling point?



1
Expert's answer
2022-01-17T16:20:16-0500

Calculating the Kilowatt-hours(kWh) required to heat the water using the following formula:

Pt=(4.2×L×ΔT)÷3600where:Pt=the power used to heat the water,in kWh,L=number of liters of waterΔT=difference in temperature (in C)mass=2kg=2litersPt=(4.2×2×(1006.5))÷3600Pt=0.218 kWhPt = (4.2 \times L \times \Delta T) \div 3600 \\ where: \\ Pt = the \ power \ used \ to \ heat \ the \ water, in \ kWh, \\ L = number \ of \ liters \ of \ water \\ \Delta T = difference \ in \ temperature \ (in \ ^\circ C) \\ mass = 2kg = 2liters \\ Pt = (4.2 \times 2 \times (100 - 6.5)) \div 3600 \\ Pt = 0.218 \ kWh \\


To calculate the amount of time it takes to heat the water, we divide the power used to heat the water (0.218) by the heater element rating, listed in kW.


Heating time=Power used to heat the water, in kWhHeat element rating, in kWHeating \ time = \frac{Power \ used \ to \ heat \ the \ water, \ in \ kWh}{Heat \ element \ rating, \ in \ kW}

Power used to heat the water = 0.218 kWh

Heat element rating = 100 W = 100/1000 kW = 0.1 kW


Heating time=0.218kWh0.1kW=2.18 hrsHeating time=7848 s (in seconds)\displaystyle Heating \ time = \frac{0.218 kWh}{0.1 kW} = 2.18 \ hrs \\ Heating \ time = 7848 \ s \ (in \ seconds)




OR, SOLVING USING THE FORMULA OF HEAT CAPACITY:

ΔE=mcΔθΔE=mc(θ2θ1)where,ΔE=Thermal energym=mass of the water=2kg=2litresc=specific heat capacity of waterΔθ=change in temperaturec=4186J/kg/KΔE=mc(θ2θ1)ΔE=2×4186×(100C6.5C)ΔE=782782JPower,P=Change in Thermal Energy,ΔETime,tP=782782J3600sP=217.44 WTime required with 100W heater=217.44100t=2.1744 hrs=7827.84 secondst=7828 s\displaystyle \Delta E = mc \Delta\theta \\ \Delta E = mc(\theta_2 - \theta_1) \\ where, \Delta E = Thermal \ energy \\ m = mass \ of \ the \ water = 2kg = 2litres\\ c = specific \ heat \ capacity \ of \ water \\ \Delta\theta = change \ in \ temperature \\ \\ c = 4186J/kg/K \\ \\ \Delta E = mc(\theta_2 - \theta_1) \\ \Delta E = 2 \times 4186 \times (100^\circ C - 6.5^\circ C) \\ \Delta E = 782782J \\ Power, P = \frac {Change \ in \ Thermal \ Energy, \Delta E}{Time, t} \\ P = \frac {782782 J}{3600s} \\ P = 217.44 \ W \\ \therefore \\ Time \ required \ with \ 100W \ heater = \frac{217.44}{100} \\ t = 2.1744 \ hrs = 7827.84\ seconds \\ t = 7828 \ s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS