Using the method of Super mesh analysis.
Considering loop 1,
12kΩ I2+4kΩ (I2−I1)+8kΩ (I2−I3)=012kΩ I2+4kΩ I2−4kΩ I1+8kΩ (I2−I3)=024kΩ I2−4kΩ I1−8kΩ I3=0−−−−−eqn(1)
Since I3−I1=6mA−−−−−−−−−eqn(2)∴I3=6mA+I1substituting for I3 in equation(1)24kΩ I2−4kΩ I1−8kΩ (6mA+I1)=024kΩ I2−4kΩ I1−8kΩ I1−48=024kΩ I2−12kΩ I1−48=0−−−−−−eqn(3)
Considering loop 2,
−6Vx+4kΩ(I1−I2)+8kΩ(I3−I2)+12kΩ I3since, Vx=8kΩ(I3−I2)−−−−−−−eqn(4)−48kΩ(I3−I2)+4kΩI1−12kΩI2+20kΩI3=04kΩ I1−36kΩ I2−28kΩ I3=0−−−−eqn(5)substituting for I3 in equation(5)4kΩ I1−36kΩ I2−28kΩ(6mA+I1)=04kΩ I1−64kΩ I2−168=0−−−−−eqn(6)
Solving equation (3) and equation (6) using simultaneously;
−12kΩ I1+24kΩ I2=48−−−−−−−eqn(3)4kΩ I1−64kΩ I2=168−−−−−−eqn(6)I1=−0.0106 AI2=−3.2857×10−3 A=−3.2857 mASince I3−I1=6mA−−−−−− from eqn(2)I3=6mA+I1I3=6×10−3 A−0.0106 AI3=−4.6×10−3A=−4.6 mA∴(i)Vo=I3×12kΩVo=−4.6×10−3 A ×12kΩVo=55.2 V(ii)Vx=8kΩ(I3−I2)Vx=8kΩ(−4.6 mA−(−3.2857 mA))Vx=8×103×−1.143×10−3Vx=10.5144 V(iii)Voltage across resistor 4kΩ;V=4kΩ(I1−I2)V=29.26V(iv)Voltage across resistor 12kΩ;V=12kΩ×I2V=39.43 V
Comments
Leave a comment