Answer to Question #268551 in Electric Circuits for Ayush Bhandarkar

Question #268551

Determine the total current I in the Fig. 2?

: 50


Marks

10

Solve the given network circuit by using Mesh analysis to find V0 and Vx and also find the voltage across each resistor element in Fig.1?


1
Expert's answer
2021-11-25T10:42:46-0500



Using the method of Super mesh analysis.


Considering loop 1,

"12k\\Omega \\ I_2 + 4k\\Omega \\ (I_2 - I_1) + 8k\\Omega \\ (I_2 - I_3) = 0 \\\\\n12k\\Omega \\ I_2 + 4k\\Omega \\ I_2 - 4k\\Omega \\ I_1 + 8k\\Omega \\ (I_2 - I_3) = 0 \\\\\n24k\\Omega \\ I_2 - 4k\\Omega \\ I_1 - 8k\\Omega \\ I_3 = 0 -----eqn(1)\\\\"

"Since \\ I_3 - I_1 = 6mA --------- eqn(2) \\\\\n\\therefore I_3 = 6mA + I_1 \\\\\nsubstituting \\ for \\ I_3 \\ in \\ equation (1) \\\\\n24k\\Omega \\ I_2 - 4k\\Omega \\ I_1 - 8k\\Omega \\ (6mA + I_1) = 0 \\\\\n24k\\Omega \\ I_2 - 4k\\Omega \\ I_1 - 8 k\\Omega \\ I_1 - 48 = 0 \\\\\n24k\\Omega \\ I_2 - 12k\\Omega \\ I_1 - 48 = 0 ------ eqn (3) \\\\"


Considering loop 2,

"-6V_x + 4k\\Omega (I_1 - I_2) + 8k\\Omega (I_3 - I_2) + 12k\\Omega \\ I_3 \\\\\nsince, \\ V_x = 8k\\Omega (I_3 - I_2) -------eqn (4) \\\\\n-48k\\Omega (I_3 - I_2) + 4k\\Omega I_1 - 12k\\Omega I_2 + 20k\\Omega I_3 = 0 \\\\\n4k\\Omega \\ I_1 - 36k\\Omega \\ I_2 - 28k\\Omega \\ I_3 = 0 ---- eqn (5) \\\\\nsubstituting \\ for \\ I_3 \\ in \\ equation(5) \\\\\n4k\\Omega \\ I_1 - 36k\\Omega \\ I_2 - 28k\\Omega(6mA + I_1) = 0 \\\\\n4k\\Omega \\ I_1 - 64k\\Omega \\ I_2 - 168 = 0 ----- eqn (6) \\\\"


Solving equation (3) and equation (6) using simultaneously;

"-12k\\Omega \\ I_1 + 24k\\Omega \\ I_2 = 48 ------- eqn (3) \\\\\n4k\\Omega \\ I_1 - 64k\\Omega \\ I_2 = 168 ------ eqn (6) \\\\\nI_1 = -0.0106 \\ A \\\\\nI_2 = -3.2857 \\times 10^{-3} \\ A = -3.2857 \\ mA \\\\\nSince \\ I_3 - I_1 = 6mA ------ \\ from \\ eqn(2) \\\\ \nI_3 = 6mA + I_1 \\\\\nI_3 = 6 \\times 10^{-3} \\ A - 0.0106 \\ A \\\\\nI_3 = -4.6 \\times 10^{-3} A = -4.6 \\ mA \\\\\n\\therefore \\\\\n(i) \\\\ \nV_o = I_3 \\times 12k\\Omega \\\\\nV_o = - 4.6 \\times 10^{-3} \\ A \\ \\times 12k\\Omega \\\\\nV_o = 55.2 \\ V \\\\\n(ii) \\\\\nV_x = 8k\\Omega (I_3 - I_2) \\\\\nV_x = 8k\\Omega (-4.6 \\ mA - (-3.2857 \\ mA)) \\\\\nV_x = 8\\times 10^{3} \\times -1.143 \\times 10^{-3} \\\\\nV_x = 10.5144 \\ V \\\\\n(iii) Voltage \\ across \\ resistor \\ 4k\\Omega; \\\\\nV = 4k\\Omega (I_1 - I_2)\nV = 29.26 V \\\\\n(iv) \\\\\nVoltage \\ across \\ resistor \\ 12k\\Omega; \\\\ \nV = 12k\\Omega \\times I_2 \\\\\nV = 39.43 \\ V"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS