Answer to Question #268551 in Electric Circuits for Ayush Bhandarkar

Question #268551

Determine the total current I in the Fig. 2?

: 50


Marks

10

Solve the given network circuit by using Mesh analysis to find V0 and Vx and also find the voltage across each resistor element in Fig.1?


1
Expert's answer
2021-11-25T10:42:46-0500



Using the method of Super mesh analysis.


Considering loop 1,

12kΩ I2+4kΩ (I2I1)+8kΩ (I2I3)=012kΩ I2+4kΩ I24kΩ I1+8kΩ (I2I3)=024kΩ I24kΩ I18kΩ I3=0eqn(1)12k\Omega \ I_2 + 4k\Omega \ (I_2 - I_1) + 8k\Omega \ (I_2 - I_3) = 0 \\ 12k\Omega \ I_2 + 4k\Omega \ I_2 - 4k\Omega \ I_1 + 8k\Omega \ (I_2 - I_3) = 0 \\ 24k\Omega \ I_2 - 4k\Omega \ I_1 - 8k\Omega \ I_3 = 0 -----eqn(1)\\

Since I3I1=6mAeqn(2)I3=6mA+I1substituting for I3 in equation(1)24kΩ I24kΩ I18kΩ (6mA+I1)=024kΩ I24kΩ I18kΩ I148=024kΩ I212kΩ I148=0eqn(3)Since \ I_3 - I_1 = 6mA --------- eqn(2) \\ \therefore I_3 = 6mA + I_1 \\ substituting \ for \ I_3 \ in \ equation (1) \\ 24k\Omega \ I_2 - 4k\Omega \ I_1 - 8k\Omega \ (6mA + I_1) = 0 \\ 24k\Omega \ I_2 - 4k\Omega \ I_1 - 8 k\Omega \ I_1 - 48 = 0 \\ 24k\Omega \ I_2 - 12k\Omega \ I_1 - 48 = 0 ------ eqn (3) \\


Considering loop 2,

6Vx+4kΩ(I1I2)+8kΩ(I3I2)+12kΩ I3since, Vx=8kΩ(I3I2)eqn(4)48kΩ(I3I2)+4kΩI112kΩI2+20kΩI3=04kΩ I136kΩ I228kΩ I3=0eqn(5)substituting for I3 in equation(5)4kΩ I136kΩ I228kΩ(6mA+I1)=04kΩ I164kΩ I2168=0eqn(6)-6V_x + 4k\Omega (I_1 - I_2) + 8k\Omega (I_3 - I_2) + 12k\Omega \ I_3 \\ since, \ V_x = 8k\Omega (I_3 - I_2) -------eqn (4) \\ -48k\Omega (I_3 - I_2) + 4k\Omega I_1 - 12k\Omega I_2 + 20k\Omega I_3 = 0 \\ 4k\Omega \ I_1 - 36k\Omega \ I_2 - 28k\Omega \ I_3 = 0 ---- eqn (5) \\ substituting \ for \ I_3 \ in \ equation(5) \\ 4k\Omega \ I_1 - 36k\Omega \ I_2 - 28k\Omega(6mA + I_1) = 0 \\ 4k\Omega \ I_1 - 64k\Omega \ I_2 - 168 = 0 ----- eqn (6) \\


Solving equation (3) and equation (6) using simultaneously;

12kΩ I1+24kΩ I2=48eqn(3)4kΩ I164kΩ I2=168eqn(6)I1=0.0106 AI2=3.2857×103 A=3.2857 mASince I3I1=6mA from eqn(2)I3=6mA+I1I3=6×103 A0.0106 AI3=4.6×103A=4.6 mA(i)Vo=I3×12kΩVo=4.6×103 A ×12kΩVo=55.2 V(ii)Vx=8kΩ(I3I2)Vx=8kΩ(4.6 mA(3.2857 mA))Vx=8×103×1.143×103Vx=10.5144 V(iii)Voltage across resistor 4kΩ;V=4kΩ(I1I2)V=29.26V(iv)Voltage across resistor 12kΩ;V=12kΩ×I2V=39.43 V-12k\Omega \ I_1 + 24k\Omega \ I_2 = 48 ------- eqn (3) \\ 4k\Omega \ I_1 - 64k\Omega \ I_2 = 168 ------ eqn (6) \\ I_1 = -0.0106 \ A \\ I_2 = -3.2857 \times 10^{-3} \ A = -3.2857 \ mA \\ Since \ I_3 - I_1 = 6mA ------ \ from \ eqn(2) \\ I_3 = 6mA + I_1 \\ I_3 = 6 \times 10^{-3} \ A - 0.0106 \ A \\ I_3 = -4.6 \times 10^{-3} A = -4.6 \ mA \\ \therefore \\ (i) \\ V_o = I_3 \times 12k\Omega \\ V_o = - 4.6 \times 10^{-3} \ A \ \times 12k\Omega \\ V_o = 55.2 \ V \\ (ii) \\ V_x = 8k\Omega (I_3 - I_2) \\ V_x = 8k\Omega (-4.6 \ mA - (-3.2857 \ mA)) \\ V_x = 8\times 10^{3} \times -1.143 \times 10^{-3} \\ V_x = 10.5144 \ V \\ (iii) Voltage \ across \ resistor \ 4k\Omega; \\ V = 4k\Omega (I_1 - I_2) V = 29.26 V \\ (iv) \\ Voltage \ across \ resistor \ 12k\Omega; \\ V = 12k\Omega \times I_2 \\ V = 39.43 \ V




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment