What will be the time required to half the amplitude of charge stored by a capacitor and time for the energy stored to be halved in a series LRC circuit with L=40H, R=0.03 ohms and C=4.8F?
We know that
Charge
q=q0(1−e−tRC)q=q_0(1-e^{\frac{-t}{RC}})q=q0(1−eRC−t)
Gives
q=q02q=\frac{q_0}{2}q=2q0
q02=q0(1−e−tRC)\frac{q_0}{2}=q_0(1-e^{\frac{-t}{RC}})2q0=q0(1−eRC−t)
12=(1−e−tRC)\frac{1}{2}=(1-e^{\frac{-t}{RC}})21=(1−eRC−t)
−12=e−tRC2=etRC-\frac{1}{2}=e^\frac{-t}{RC}\\2=e^\frac{t}{RC}−21=eRC−t2=eRCt
t=RCln2t=RCln2t=RCln2
Put value
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments