When an object traces a circular path about an axis of rotation, its motion is considered to be rotatory motion.
We categorize the problem to be rotational kinematics under constant angular acceleration.
It is given that
Angular velocity
"\u03c9= 5.0 \\;rev\/s \\\\\n\n= 5(2 \\pi \\;rad\/s) \\\\\n\n= 10 \\pi \\;rad\/s"
Time of constant angular velocity t = 8 s
Time of angular retardation t’= 12 s
Equations to use
(i) angular acceleration
"\u03b1 = \\frac{\u03c9-\u03c9_o}{t}"
(ii) angular displacement
"\u03b8 = \u03c9_ot +(\\frac{1}{2})\u03b1t^2"
Substitution of the values
When the tub is speeding up, the angular acceleration of the tub is
"\u03b1_1 = \\frac{\u03c9-0}{t} \\\\\n\n= \\frac{10 \\pi \\;rad\/s -0}{8 \\;s} \\\\\n\n= 1.25 \\pi \\;rad\/s^2"
The angular displacement
"\u03b8_1 = \u03c9_ot +(\\frac{1}{2})\u03b1_1t^2 \\\\\n\n= 0 + (\\frac{1}{2})(1.25 \\pi \\;rad\/s^2)(8 \\;s)^2 \\\\\n\n= 40 \\pi \\;rad"
However, one revolution
"=2 \\pi \\;rad"
Therefore, the number of revolutions made by the tub in 8s when it is accelerating is
"n_1 =\\frac{40 \\pi \\;rad}{2 \\pi \\;rad\/rev} \\\\\n\n= 20 \\;rev"
When the tub is slowing down from
"10 \\pi \\;rad\/s"
to zero in 12 s, then the angular acceleration of the tub is
"\u03b1_2 = \\frac{0 -\u03c9}{t} \\\\\n\n= \\frac{0-10 \\pi \\;rad\/s}{12 \\;s} \\\\\n\n= -0.833 \\pi \\;rad\/s^2"
The angular displacement
"\u03b8_2 =\u03c9_ot + (\\frac{1}{2})\u03b1_2t^2 \\\\\n\n= (10 \\;rad\/s)(12 \\;s) + (\\frac{1}{2})(-0.833 \\pi \\;rad\/s^2)(12 \\;s)^2 \\\\\n\n= 120 \\pi \\;rad -60 \\pi \\;rad \\\\\n\n= 60 \\pi \\;rad"
Therefore, the number of revolutions made by the tub in 12s when it is decelerating is
"n_2= \\frac{60 \\pi \\;rad}{2 \\pi \\;rad\/rev} \\\\\n\n= 30 \\;rev"
The total number of revolutions the tub makes when it is in motion
= 20 rev + 30 rev
= 50 rev
Comments
Leave a comment