Find the capacitance of a spherical capacitor filled with a dielectric of dielectric
constant K.
potentialV1=k(−q)Kr2potential \\V_1=\frac{k(-q)}{Kr_2}potentialV1=Kr2k(−q)
Potential plate second
V2=k(+q)Kr1V_2=\frac{k(+q)}{Kr_1}V2=Kr1k(+q)
We know that
∆V=V1−V2∆V=V_1-V_2∆V=V1−V2
Put value
∆V=q4πϵ0K[1r1−1r2]∆V=\frac{q}{4\pi\epsilon_0K}[\frac{1}{r_1}-\frac{1}{r_2}]∆V=4πϵ0Kq[r11−r21]
∆V=q4πϵ0K[r1−r2r1r2]∆V=\frac{q}{4\pi\epsilon_0K}[\frac{r_1-r_2}{r_1r_2}]∆V=4πϵ0Kq[r1r2r1−r2]
∆V=q4πϵ0Kr1−r2r1r2∆V=\frac{q}{4\pi\epsilon_0K}\frac{r_1-r_2}{r_1r_2}∆V=4πϵ0Kqr1r2r1−r2
We know that capacitance
C0=q∆VC_0=\frac{q}{∆V}C0=∆Vq
C0=4πϵ0Kr1r2r1−r2C_0=4\pi\epsilon_0K\frac{r_1r_2}{r_1-r_2}C0=4πϵ0Kr1−r2r1r2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments