Question #256557

Find the capacitance of a spherical capacitor filled with a dielectric of dielectric 

constant K.


1
Expert's answer
2021-10-27T10:14:04-0400

potentialV1=k(q)Kr2potential \\V_1=\frac{k(-q)}{Kr_2}

Potential plate second


V2=k(+q)Kr1V_2=\frac{k(+q)}{Kr_1}

We know that

V=V1V2∆V=V_1-V_2

Put value

V=q4πϵ0K[1r11r2]∆V=\frac{q}{4\pi\epsilon_0K}[\frac{1}{r_1}-\frac{1}{r_2}]


V=q4πϵ0K[r1r2r1r2]∆V=\frac{q}{4\pi\epsilon_0K}[\frac{r_1-r_2}{r_1r_2}]

V=q4πϵ0Kr1r2r1r2∆V=\frac{q}{4\pi\epsilon_0K}\frac{r_1-r_2}{r_1r_2}

We know that capacitance

C0=qVC_0=\frac{q}{∆V}

Put value

C0=4πϵ0Kr1r2r1r2C_0=4\pi\epsilon_0K\frac{r_1r_2}{r_1-r_2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS