Question #199374

A particle with a charge of -1.24 x 10 C is moving with instantaneous velocity = (1.49 x 101)+(-3.85 x 101. What is the force exerted on this particle by a magnetic field (a) = (1.40 7) + (-2.30 7) and (b) B = (-1.25T) + (2.007)j + (-3.50 T)k?


1
Expert's answer
2021-05-27T18:38:13-0400

At first, we have:


q=1.24×108C;v=[1.49×101,3.85×101,0,]msq=1.24\times10^{-8}\,C; \,\vec{v}=\begin{bmatrix} 1.49\times 10^1, & -3.85\times 10^1, & 0, \end{bmatrix} \tfrac{m}{s}


(a)B=[1.40,2.30,0,]T(a)\,\vec{B} = \begin{bmatrix} 1.40, & -2.30, & 0, \end{bmatrix} T

(b)B=[1.25,2.00,3.50,]T(b)\,\vec{B} = \begin{bmatrix} -1.25, & 2.00, & -3.50, \end{bmatrix}T


F=qv×B\vec{F} = q\cdot \vec{v}\times \vec{B}


Using the definition of the Lorentz force will allow us to calculate the force exerted by each magnetic field, thus we find that:


(a) FB=(1.24×108)(i^j^k^14.938.501.402.300)N\vec{F_{B}}=(1.24\times10^{-8}) \begin{pmatrix} \,\widehat{i} & \widehat{j} & \widehat{k}\,\\ 14.9 & -38.5 & 0\\ 1.40 &-2.30 & 0 \end{pmatrix}\,N


FB=(1.24×108N)(14.938.51.402.30)k^\vec{F_{B}}=(1.24\times10^{-8}\,N)\begin{pmatrix} 14.9 & -38.5\\ 1.40 &-2.30 \end{pmatrix}\widehat{k}


FB=(1.24108N)((14.92.30)(1.4038.5))k^\vec{F_{B}}=(1.24*10^{-8}\,N)((-14.9*2.30)-(-1.40*38.5)) \widehat{k}


(a)FB=(2.43×107N)k^(a) \vec{F_{B}}=(2.43\times10^{-7}\,N)\,\widehat{k}


Then, for b:


(b) FB=(1.24×108)(i^j^k^14.938.501.252.003.50)N\vec{F_{B}}=(1.24\times10^{-8}) \begin{pmatrix} \widehat{i} & \widehat{j} & \widehat{k}\\ 14.9 & -38.5 & 0\\ -1.25 &-2.00 & -3.50 \end{pmatrix}\,N =


(1.24)(108)N)[(14.938.51.252.00)k^+(i^j^14.938.5)(3.50)](1.24)(10^{-8})\,N)\left [ \begin{pmatrix} 14.9 & -38.5 \\ -1.25 & -2.00 \end{pmatrix}\widehat{k}\,+\begin{pmatrix} \widehat{i} & \widehat{j} \\ 14.9 & -38.5 \end{pmatrix}(-3.50) \right ]


=(1.24108)[(29.848.125)k^+(38.5i^14.9j^)(3.50)](1.24*10^{-8})[(-29.8-48.125)\widehat{k}\,+(-38.5\widehat{i}-14.9\widehat{j})(-3.50)]


= (134.75i^+52.15j^77.925k^)(1.24108)N(134.75\widehat{i}+52.15\widehat{j}-77.925\widehat{k})(1.24*10^{-8})\,N


(b) FB=(16.71i^+6.47j^9.66k^)107N\vec{F_{B}}=(16.71\widehat{i}+6.47\widehat{j}-9.66\widehat{k}\,) *10^{-7}\,N


In conclusion, the forces exerted on the charged particle due to the magnetic field are:

  • (a)FB=(2.43107N)k^(a)\,\vec{F_{B}}=(2.43*10^{-7}\,N)\,\widehat{k}
  • (b)FB=(16.71i^+6.47j^9.66k^)107N(b)\,\vec{F_{B}}=(16.71\widehat{i}+6.47\widehat{j}-9.66\widehat{k}\,) *10^{-7}\,N


Reference:

  • Young, H. D., & Freedman, R. A. (2014). Sears and Zemansky's University Physics (with Modern Physics Technology Update). Edinburgh: Pearson.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS