Gives
r=80cm 0.80m
Charge=18.2× 2 0 − 4 C \times20^{-4}C × 2 0 − 4 C
E 1 = K q 1 q 2 r 2 E_1=\frac{Kq_1q_2}{r^2} E 1 = r 2 K q 1 q 2
E 2 = K q 1 q 2 r 2 E_2=\frac{Kq_1q_2}{r^2} E 2 = r 2 K q 1 q 2
E 3 = K q 1 q 2 r ′ 2 E_3=\frac{Kq_1q_2}{r'^2} E 3 = r ′2 K q 1 q 2
E1 And E2 perpendiculer
Resultant
E'=E 1 2 + E 2 2 \sqrt{E_1^2+E_2^2} E 1 2 + E 2 2
E ′ = 2 E 1 = 2 E 2 E'=\sqrt2E_1=\sqrt{2}E_2 E ′ = 2 E 1 = 2 E 2
E 3 = k q 1 q 2 2 r 2 E_3=\frac{kq_1q_2}{2r^2} E 3 = 2 r 2 k q 1 q 2
Where r'=2 r \sqrt{2}r 2 r
E 1 = 9 × 1 0 9 × 18.2 × 1 0 − 4 × 18.2 × 1 0 − 4 0. 8 2 E_1=\frac{9\times10^9\times18.2\times10^{-4}\times18.2\times10^{-4}}{0.8^2} E 1 = 0. 8 2 9 × 1 0 9 × 18.2 × 1 0 − 4 × 18.2 × 1 0 − 4
E 1 = 46.59 × 1 0 3 N / C E_1=46.59\times10^{3}N/C E 1 = 46.59 × 1 0 3 N / C
E 1 = E 2 = 46.59 × 1 0 3 N / C E_1=E_2=46.59\times10^3N/C E 1 = E 2 = 46.59 × 1 0 3 N / C
E ′ = 2 × 46.59 × 1 0 3 N / C = 65.88 × 1 0 3 N / C E'=\sqrt2\times46.59\times10^3N/C=65.88\times10^3N/C E ′ = 2 × 46.59 × 1 0 3 N / C = 65.88 × 1 0 3 N / C E 3 = 9 × 1 0 9 × 18.2 × 1 0 − 4 × 18.2 × 1 0 − 4 ( 2 × 0.8 ) 2 E_3=\frac{9\times10^9\times18.2\times10^{-4}\times18.2\times10^{-4}}{(\sqrt2\times0.8)^2} E 3 = ( 2 × 0.8 ) 2 9 × 1 0 9 × 18.2 × 1 0 − 4 × 18.2 × 1 0 − 4
E 3 = 23.295 × 1 0 3 N / C E_3=23.295\times10^3N/C E 3 = 23.295 × 1 0 3 N / C
E n e t = E ′ + E 3 E_{net}=E'+E_3 E n e t = E ′ + E 3
E 3 = 65.88 × 1 0 3 + 23.295 × 1 0 3 = 89.175 × 1 0 3 N / C E_3=65.88\times10^3+23.295\times10^3=89.175\times10^3 N/C E 3 = 65.88 × 1 0 3 + 23.295 × 1 0 3 = 89.175 × 1 0 3 N / C
Comments