Two light, conducting spheres, each 6 mm diameter and having a mass of 10 mg, are
suspended from the same point by fine insulated fibers of 50cm long. Due to electrostatic
repulsion the spheres are in equilibrium when 3 cm apart.
"sin\\Big(\\dfrac{\\theta}{2}\\Big)=\\dfrac{1.5}{50}"
"\\dfrac{\\theta}{2}=sin^{-1}\\Big(\\dfrac{1.5}{50}\\Big)"
"\\theta=3.43\\degree"
Balancing forces in x direction,
"Tcos(90\\degree-1.715\\degree)=F"
"T=\\dfrac{F}{cos88.28\\degree}\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space(1)"
Balancing forces in y direction
"Tsin88.28\\degree=mg"
"T=\\dfrac{mg}{sin88.28\\degree}\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space(2)"
From equation (1) and (2)
"\\dfrac{F}{mg}=cot88.28\\degree"
"F=mg\\times cot88.28\\degree"
"F=2.94\\times10^{-3}\\space N"
Let charges on both the sphere be "q"
Electrostatic force, "F=\\dfrac{kq^2}{r^2}"
"q=\\sqrt{\\dfrac{(3\\times10^{-2})^2(2.94\\times10^{-3})}{9\\times10^{9}}}"
"q=1.714\\times10^{-8}\\space C"
Comments
Leave a comment