Calculate the resonance frequency of a circuit capacitive reactance value of a 310nF capacitor and inductive reactance value of a 2m Ω inductance.
C=310nf=310×10−9F,L=2mΩ=2×10−3ΩC=310nf=310\times 10^{-9}F, L=2m\Omega=2\times 10^{-3} \OmegaC=310nf=310×10−9F,L=2mΩ=2×10−3Ω
Resonance frequency ωo=1LC=1310×2×10−12=1012620=1.62×109sec−1\omega_o=\dfrac{1}{\sqrt{LC}}=\dfrac{1}{\sqrt{310\times 2\times 10^{-12}}}=\dfrac{10^{12}}{\sqrt{620}}=1.62\times 10^9 sec^{-1}ωo=LC1=310×2×10−121=6201012=1.62×109sec−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments