Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small F_1&=\\small k\\frac{q_3q_4}{a^2}=k\\frac{(2\\times10^{-6}C\\times 2\\times 10^{-6}C)}{a^2}\\\\\n&=\\small 4\\bigg[\\frac{10^{-12}k}{a^2}\\bigg]\\,N\\\\\\\\\n\n\\small F_2&=\\small k\\frac{(2\\times10^{-6}C\\times1\\times10^{-6}C)}{a^2}\\\\\n\\small&=\\small 2\\bigg[\\frac{10^{-12}k}{a^2}\\bigg]\\,N\\\\\\\\\n\n\\small F_3&=\\small k\\frac{(2\\times10^{-6}C\\times1\\times10^{-6}C)}{2a^2}\\\\\n&=\\small \\bigg[\\frac{10^{-12}k}{a^2}\\bigg]\\,N\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small Y&=\\small F_2+F_3\\sin45\\\\\n&=\\small \\bigg[\\frac{10^{-12}k}{a^2}\\bigg]\\bigg(2+\\frac{1}{\\sqrt2}\\bigg)\\\\\n&=\\small 2.707\\bigg[\\frac{10^{-12}k}{a^2}\\bigg]\\,N\\\\\\\\\n\n\\small X&=\\small F_1-F_3\\cos45\\\\\n&=\\small 3.293\\bigg[\\frac{10^{-12}k}{a^2}\\bigg]\\,N\n\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small R&=\\small \\sqrt{X^2+Y^2}\\\\\n&=\\small \\bigg[\\frac{10^{-12}k}{a^2}\\bigg]\\sqrt{(2.707)^2+(3.293)^2}\\\\\n&=\\small 4.263\\bigg[\\frac{10^{-12}k}{a^2}\\bigg]\\,N\n\\end{aligned}"
Comments
Leave a comment