Explanations & Calculations
Refer to the figure attached
F1 is repulsive due to the like q3 & q4 charges & both F2, F3 are attractive due to the opposite q1, q2 charges. Once those 3 forces are found (by Coulomb's law), the resultant generated on q4 can be calculated by resolving them into orthogonal 2 components. That is the idea behind this question. You need to know the length of a side of the square . If it is a \small a a for general case, then the diagonal length of the square is 2 a \small \sqrt2a 2 a Then, F 1 = k q 3 q 4 a 2 = k ( 2 × 1 0 − 6 C × 2 × 1 0 − 6 C ) a 2 = 4 [ 1 0 − 12 k a 2 ] N F 2 = k ( 2 × 1 0 − 6 C × 1 × 1 0 − 6 C ) a 2 = 2 [ 1 0 − 12 k a 2 ] N F 3 = k ( 2 × 1 0 − 6 C × 1 × 1 0 − 6 C ) 2 a 2 = [ 1 0 − 12 k a 2 ] N \qquad\qquad
\begin{aligned}
\small F_1&=\small k\frac{q_3q_4}{a^2}=k\frac{(2\times10^{-6}C\times 2\times 10^{-6}C)}{a^2}\\
&=\small 4\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N\\\\
\small F_2&=\small k\frac{(2\times10^{-6}C\times1\times10^{-6}C)}{a^2}\\
\small&=\small 2\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N\\\\
\small F_3&=\small k\frac{(2\times10^{-6}C\times1\times10^{-6}C)}{2a^2}\\
&=\small \bigg[\frac{10^{-12}k}{a^2}\bigg]\,N
\end{aligned} F 1 F 2 F 3 = k a 2 q 3 q 4 = k a 2 ( 2 × 1 0 − 6 C × 2 × 1 0 − 6 C ) = 4 [ a 2 1 0 − 12 k ] N = k a 2 ( 2 × 1 0 − 6 C × 1 × 1 0 − 6 C ) = 2 [ a 2 1 0 − 12 k ] N = k 2 a 2 ( 2 × 1 0 − 6 C × 1 × 1 0 − 6 C ) = [ a 2 1 0 − 12 k ] N
Then the orthogonal components are, Y = F 2 + F 3 sin 45 = [ 1 0 − 12 k a 2 ] ( 2 + 1 2 ) = 2.707 [ 1 0 − 12 k a 2 ] N X = F 1 − F 3 cos 45 = 3.293 [ 1 0 − 12 k a 2 ] N \qquad\qquad
\begin{aligned}
\small Y&=\small F_2+F_3\sin45\\
&=\small \bigg[\frac{10^{-12}k}{a^2}\bigg]\bigg(2+\frac{1}{\sqrt2}\bigg)\\
&=\small 2.707\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N\\\\
\small X&=\small F_1-F_3\cos45\\
&=\small 3.293\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N
\end{aligned} Y X = F 2 + F 3 sin 45 = [ a 2 1 0 − 12 k ] ( 2 + 2 1 ) = 2.707 [ a 2 1 0 − 12 k ] N = F 1 − F 3 cos 45 = 3.293 [ a 2 1 0 − 12 k ] N
R = X 2 + Y 2 = [ 1 0 − 12 k a 2 ] ( 2.707 ) 2 + ( 3.293 ) 2 = 4.263 [ 1 0 − 12 k a 2 ] N \qquad\qquad
\begin{aligned}
\small R&=\small \sqrt{X^2+Y^2}\\
&=\small \bigg[\frac{10^{-12}k}{a^2}\bigg]\sqrt{(2.707)^2+(3.293)^2}\\
&=\small 4.263\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N
\end{aligned} R = X 2 + Y 2 = [ a 2 1 0 − 12 k ] ( 2.707 ) 2 + ( 3.293 ) 2 = 4.263 [ a 2 1 0 − 12 k ] N
Substituting the values of a \small a a (should be in meters) and k \small k k (= 9 × 1 0 − 9 N m 2 C − 2 \small 9\times10^{-9}Nm^2C^{-2} 9 × 1 0 − 9 N m 2 C − 2 ), the resultant force could be found.
Comments