Question #184089

Four charges on the corner of square q1=q2=+1µc on the top of the square andq3=q4=-2µc on the bottom of the square, Find the resultant force on q4

1
Expert's answer
2021-04-23T07:31:24-0400

Explanations & Calculations


  • Refer to the figure attached


  • F1 is repulsive due to the like q3 & q4 charges & both F2, F3 are attractive due to the opposite q1, q2 charges.
  • Once those 3 forces are found (by Coulomb's law), the resultant generated on q4 can be calculated by resolving them into orthogonal 2 components.
  • That is the idea behind this question.
  • You need to know the length of a side of the square. If it is a\small a for general case, then the diagonal length of the square is 2a\small \sqrt2a
  • Then,

F1=kq3q4a2=k(2×106C×2×106C)a2=4[1012ka2]NF2=k(2×106C×1×106C)a2=2[1012ka2]NF3=k(2×106C×1×106C)2a2=[1012ka2]N\qquad\qquad \begin{aligned} \small F_1&=\small k\frac{q_3q_4}{a^2}=k\frac{(2\times10^{-6}C\times 2\times 10^{-6}C)}{a^2}\\ &=\small 4\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N\\\\ \small F_2&=\small k\frac{(2\times10^{-6}C\times1\times10^{-6}C)}{a^2}\\ \small&=\small 2\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N\\\\ \small F_3&=\small k\frac{(2\times10^{-6}C\times1\times10^{-6}C)}{2a^2}\\ &=\small \bigg[\frac{10^{-12}k}{a^2}\bigg]\,N \end{aligned}

  • Then the orthogonal components are,

Y=F2+F3sin45=[1012ka2](2+12)=2.707[1012ka2]NX=F1F3cos45=3.293[1012ka2]N\qquad\qquad \begin{aligned} \small Y&=\small F_2+F_3\sin45\\ &=\small \bigg[\frac{10^{-12}k}{a^2}\bigg]\bigg(2+\frac{1}{\sqrt2}\bigg)\\ &=\small 2.707\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N\\\\ \small X&=\small F_1-F_3\cos45\\ &=\small 3.293\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N \end{aligned}

  • Then the resultant is,

R=X2+Y2=[1012ka2](2.707)2+(3.293)2=4.263[1012ka2]N\qquad\qquad \begin{aligned} \small R&=\small \sqrt{X^2+Y^2}\\ &=\small \bigg[\frac{10^{-12}k}{a^2}\bigg]\sqrt{(2.707)^2+(3.293)^2}\\ &=\small 4.263\bigg[\frac{10^{-12}k}{a^2}\bigg]\,N \end{aligned}

  • Substituting the values of a\small a (should be in meters) and k\small k (= 9×109Nm2C2\small 9\times10^{-9}Nm^2C^{-2} ), the resultant force could be found.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS