- Given, input has a signal power of "S(f)=2\u03bcW" and noise power "N(f)=323nW" . Hence the required signal to noise ratio "SNR=\\frac{S(f)}{N(f)}" , Now substituting the values in this equation, "SNR=\\frac{1\\times 10^{-6}}{323\\times 10^{-9}}=\\frac{1}{0.323}"
- Noise ratio "=\\frac{S_i\/N_i}{S_o\/N_o}=\\frac{3.1}{5}=0.62" and "NF=10\\log_{10}(F)= 10\\log_{10}(0.62)"
- We know that "T_e=T_o(F-1)" but "T_o=295K" Hence, "T_e=295(0.62-1)"
- Average noise power "N_P=K_BTB"
"\\Rightarrow N_B=1.3 \u00d7 10^{\u221223} j\/ k\\times (75+460)\\frac{5}{9}\\times 33\\times 1000W"
"=12750.8\\times 10^{-20} W"
"=1.75\\times 10^{-16}W"
Comments
thank you
Leave a comment