A balanced star load having an impedance of (20 – j30) Ω in each phase is supplied by a star-connected generator with line voltage of 400 V, 50 Hz. What is the total active power?
Answer
Z=(20)2+(30)2=36ΩZ=\sqrt{(20)^2+ (30)^2} =36\OmegaZ=(20)2+(30)2=36Ω
Angle
ϕ=tan−1(−30/20)=−56°\phi=\tan^{-1}(-30/20)=-56^°ϕ=tan−1(−30/20)=−56°
V=400volts
Total active power
P=V2cosϕZ=(400)2×cos(−56°)36=160000×0.5636=2.5KWP=\frac{V^2 \cos\phi}{Z}\\=\frac{(400) ^2\times cos(-56°) }{36} \\=\frac{160000\times0.56}{36}\\=2.5KWP=ZV2cosϕ=36(400)2×cos(−56°)=36160000×0.56=2.5KW
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments