Explanations & Calculations
a) Circuit diagram
b)
- Since "S_2" is kept open, no current flow through "\\small 10\\Omega" resistor.
- What happens after "S_1"set-off is some amount of charge pass-through the capacitors & saturates (assume saturates) & after no charge pass-through.
- To calculate that amount, consideration of the equivalent capacitance would be easy.
"\\qquad\\qquad\n\\begin{aligned}\n\\small Equivalent &= \\small \\frac{5\\mu F\\times(2\\mu F+3\\mu F)}{5\\mu F+(2\\mu F+3\\mu F)}\\\\\n&= \\small \\frac{5}{2}\\mu F\\\\\n&= \\small \\bold{2.5\\mu F}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small Q&= \\small 2.5\\mu F\\times100V\\\\\n&= \\small 250\\mu C\n\\end{aligned}"
- Since the equivalent of the shunted two is also "\\small 5\\mu F", that charge is qually distributes between the shunted two & "\\small 5\\mu F".
- Therefore, the charge stored in "\\small 5\\mu F" = "\\small \\bold{125\\mu F}"
- The charge stored in "\\small 2\\mu F" = "\\small 125\\mu F \\times \\large \\frac{2}{(3+2)}=\\small \\bold{50\\mu F}"
- In "\\small 3\\mu F" = "\\small 125-50=\\bold{75\\mu F}"
c)
- The energy on "\\small 5\\mu F" = "\\large \\frac{Q^2}{2C}=\\frac{(125\\times10^{-6}C)^2}{2(5\\times10^{-6}F)}=\\small \\bold{1.563\\times10^{-3}J}"
- On "\\small 2 \\mu F" ="\\large \\frac{(50\\times10^{-6} C)^2}{2(2\\times10^{-6}F)}=\\small \\bold{0.625\\times10^{-3}J}"
- On "\\small 3\\mu F" = "\\large \\frac{(75\\times 10^{-6}C)^2}{2(3\\times 10^{-6}F)}=\\small \\bold{0.938\\times 10^{-3}J}"
Comments
Leave a comment