Answer to Question #157316 in Electric Circuits for zain ul abdeen

Question #157316

Discharging RC circuit. • In the RC circuit shown, the battery has fully charged the capacitor, so Q0 = C E. Then at t = 0 the switch is thrown from position a to b. The battery emf is 20.0 V, and the capacitance C = 1.02 μF. The current I is observed to decrease to 0.50 of its initial value in 40 μs. (a) What is the value of Q, the charge on the capacitor, at t = 0? (b) What is the value of R?  (c) What is Q at t = 60 μs? 


1
Expert's answer
2021-01-23T10:30:15-0500


a) At t=0t=0 the value of the charge on the capacitor will be:


Q=CE=1.02106 F20 V=20.4106 C=20.4 μC.Q=CE=1.02\cdot10^{-6}\ F\cdot20\ V=20.4\cdot10^{-6}\ C=20.4\ \mu C.

b) Let's write the equation for current:


I(t)=I0etRC.I(t)=I_0e^{-\dfrac{t}{RC}}.

Since, I=0.5I0I=0.5I_0, we get:


0.5I0=I0etRC,0.5I_0=I_0e^{-\dfrac{t}{RC}},ln(0.5)=ln(etRC),ln(0.5)=ln(e^{-\dfrac{t}{RC}}),tRC=ln(0.5)=ln2,-\dfrac{t}{RC}=ln(0.5)=-ln2,R=tCln2=40106 s1.02106 Fln2=57 Ω.R=\dfrac{t}{Cln2}=\dfrac{40\cdot10^{-6}\ s}{1.02\cdot10^{-6}\ F\cdot ln2}=57\ \Omega.

c) Let's first find the time constant:


τ=RC=57 Ω1.02106=58106 s=58 μs.\tau=RC=57\ \Omega\cdot1.02\cdot10^{-6}=58\cdot10{-6}\ s=58\ \mu s.

Then, we can find QQ at t=60 μst=60\ \mu s:


Q=Q0etτ=20.4106 Ce60 μs58 μs=7.2 μC.Q=Q_0e^{-\dfrac{t}{\tau}}=20.4\cdot10^{-6}\ C\cdot e^{-\dfrac{60\ \mu s}{58\ \mu s}}=7.2\ \mu C.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment