As "\\vec{E}=-grad\\phi" hence "E=\\sqrt{{(\\frac{\\partial\\phi}{\\partial x})^2}+(\\frac{\\partial\\phi}{\\partial x})^2}" where "\\phi" is field potential at point "(x,y)"
As "\\phi=\\phi_1+\\phi_2+\\phi_3=1\/4\\pi\\epsilon_0(\\frac{Q_1}{r_1}+\\frac{Q_2}{r_2}+\\frac{Q_3}{r_3})" where
"r_1=\\sqrt{x^2+(y-2)^2}, r_2=\\sqrt{x^2+(y-5)^2}, r_3=\\sqrt{x^2+(y-10)^2}" and
"Q_1=10C, Q_2=-40C, Q_3=40C" then
"(\\frac{\\partial\\phi}{\\partial x})_{(3,8)}\\approx-1.0\\sdot10^4V\/m, (\\frac{\\partial\\phi}{\\partial x})_{(3,8)}\\approx-0.14\\sdot10^4V\/m" then "E\\approx1.01\\sdot10^4V\/m"
Comments
Leave a comment