The Young's modulus can be obtained as
E=F/SΔl/l,E=\dfrac{F/S} {\Delta l/l},E=Δl/lF/S, where F is the force exerted on wire, namely F=mg, S is the area of the wire section, Δl/l=0.1%=10−3.\Delta l/l = 0.1\%=10^{-3}.Δl/l=0.1%=10−3.
Therefore,
E=mg/(πr2)10−3=1 kg⋅9.81 N/m/(π(2⋅10−4 m)2)10−3=7.8⋅1010 Pa=78 GPaE=\dfrac{mg/(\pi r^2)}{10^{-3}}=\dfrac {1\,\text{kg}\cdot9.81\,\text{N/m}/(\pi (2\cdot10^{-4}\,\text{m})^2)}{10^{-3}}= 7.8\cdot10^{10}\,\text{Pa}=78\,\text{GPa}E=10−3mg/(πr2)=10−31kg⋅9.81N/m/(π(2⋅10−4m)2)=7.8⋅1010Pa=78GPa
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments