Question #138588
A copper wire AB is fused at one end B to an iron wire BC. The diameter of the copper wire is 0.50 mm and that of the iron wire is 2.50 mm. The compound wire is stretched so that its length increases by a total amount of 0.1 cm. (AB=9.00 x 10^2mm and BC = 4.50 x 10^2mm) Calculate; (a) The ratio of the extension of the copper wire to that of the iron wire (b) The tension applied to the compound wire (NB: Young modulus of copper = 1.3 x 10^11 Pa while that of iron = 2.0 x 10^11 Pa)
1
Expert's answer
2020-10-30T13:20:20-0400

A) Since the young's modulus for a copper wire of equal Ecu=FScuΔlculcuE_{cu}=\frac{\frac{F}{S_{cu}}}{\frac{\Delta l_{cu}}{l_{cu}}} , where FF is the force applied to the body, ScuS_{cu} is a cross – sectional area of copper wire, Δlcu\Delta l_{cu} elongation of copper wire, lcul_{cu} length of copper wire, then

EfrEcu\frac{E_{fr}}{E_{cu}}=Sfr×lfrΔlfr×Sfr×Δlcu×ScuScu×lcu= \frac{S_{fr}\times l_{fr}}{\Delta l_{fr} \times S_{fr}}\times \frac{\Delta l_{cu} \times S_{cu} }{S_{cu} \times l_{cu}} ;

ΔlcuΔlfr=Efr×Sfr×lcuEcu×Scu×lfr=\frac{\Delta l_{cu}}{\Delta l_{fr}}=\frac{E_{fr}\times S_{fr} \times l_{cu}}{ E_{cu}\times S_{cu} \times l_{fr} }= 2×1011×π×(2.52)2×9×102×1031.3×1011×π×(0.52)2×4.5×102×10376.92\frac{2\times 10^{11} \times \pi \times (\frac{2.5}{2})^2\times 9 \times 10^2 \times 10^{-3}}{1.3\times 10^{11} \times \pi \times (\frac{0.5}{2})^2\times 4.5 \times 10^2 \times 10^{-3}} \approx76. 92 .

B) The total young's modulus is Etotal=Ecu+Efr=σεE_{total}=E_{cu}+E_{fr}=\frac{\sigma}{\varepsilon} , where σ\sigma is the total stress, ε=Δllcu+lfr\varepsilon=\frac {\Delta l}{l_{cu}+l_{fr}} is the total elongation, then

σ=Δl×(Ecu+Efr)lcu+lfr\sigma=\frac{\Delta l \times (E_{cu}+E_{fr})}{l_{cu}+l_{fr}} =0.1×102×1011×(1.3+2)(9+4.5)×102×1032.44×108=\frac{0.1\times 10^{-2} \times 10^{11}\times(1.3+2)}{(9+4.5)\times 10^2\times 10^{-3}}\approx2.44\times 10^8


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS