A) Since the young's modulus for a copper wire of equal "E_{cu}=\\frac{\\frac{F}{S_{cu}}}{\\frac{\\Delta l_{cu}}{l_{cu}}}" , where "F" is the force applied to the body, "S_{cu}" is a cross – sectional area of copper wire, "\\Delta l_{cu}" elongation of copper wire, "l_{cu}" length of copper wire, then
"\\frac{E_{fr}}{E_{cu}}""= \\frac{S_{fr}\\times l_{fr}}{\\Delta l_{fr} \\times S_{fr}}\\times \\frac{\\Delta l_{cu} \\times S_{cu} }{S_{cu} \\times l_{cu}}" ;
"\\frac{\\Delta l_{cu}}{\\Delta l_{fr}}=\\frac{E_{fr}\\times S_{fr} \\times l_{cu}}{ E_{cu}\\times S_{cu} \\times l_{fr} }=" "\\frac{2\\times 10^{11} \\times \\pi \\times (\\frac{2.5}{2})^2\\times 9 \\times 10^2 \\times 10^{-3}}{1.3\\times 10^{11} \\times \\pi \\times (\\frac{0.5}{2})^2\\times 4.5 \\times 10^2 \\times 10^{-3}} \\approx76. 92" .
B) The total young's modulus is "E_{total}=E_{cu}+E_{fr}=\\frac{\\sigma}{\\varepsilon}" , where "\\sigma" is the total stress, "\\varepsilon=\\frac {\\Delta l}{l_{cu}+l_{fr}}" is the total elongation, then
"\\sigma=\\frac{\\Delta l \\times (E_{cu}+E_{fr})}{l_{cu}+l_{fr}}" "=\\frac{0.1\\times 10^{-2} \\times 10^{11}\\times(1.3+2)}{(9+4.5)\\times 10^2\\times 10^{-3}}\\approx2.44\\times 10^8"
Comments
Leave a comment