Let "20.0\\ nC" charge be "q_1", "40.0\\ nC" charge be "q_2" and "10.0\\ nC" charge be "q_3". Let, also, the distance between the charges "q_1"and "q_2" be "r_{12}", the distance between the charges "q_2"and "q_3" be "r_{23}" and the distance between the charges "q_1"and "q_3" be "r_{13}".
Let's write the formula for the electric potential energy due to charges "q_1"and "q_2":
here, "k=8.99\\cdot 10^9 \\ \\dfrac{Nm^2}{C^2}" is Coulomb constant, "r_{13}=4\\cdot 10^{-2}\\ m" is the distance between the charges "q_1"and "q_3", "r_{23}=3\\cdot 10^{-2}\\ m" is the distance between the charges "q_2"and "q_3".
Then, we can calculate "U_1":
"U_1=8.99\\cdot 10^9 \\ \\dfrac{Nm^2}{C^2}\\cdot \\dfrac{20.0\\cdot 10^{-9}\\ C \\cdot 40.0\\cdot 10^{-9}\\ C}{\\sqrt{((4\\cdot 10^{-2}\\ m)^2+(3\\cdot 10^{-2}\\ m)^2)}}=1.44\\cdot 10^{-4}\\ J."
Similarly, we can write the formula for the electric potential energy due to charges "q_2"and "q_3":
Let's calculate "U_2":
"U_2=8.99\\cdot 10^9 \\ \\dfrac{Nm^2}{C^2}\\cdot\\dfrac{40.0\\cdot 10^{-9}\\ C \\cdot 10.0\\cdot 10^{-9}\\ C}{3\\cdot 10^{-2}\\ m}=1.2\\cdot 10^{-4}\\ J."
Finally, we can write the formula for the electric potential energy due to charges "q_1"and "q_3":
Let's calculate "U_3":
"U_3=8.99\\cdot 10^9 \\ \\dfrac{Nm^2}{C^2}\\cdot\\dfrac{20.0\\cdot 10^{-9}\\ C \\cdot 10.0\\cdot 10^{-9}\\ C}{4\\cdot 10^{-2}\\ m}=0.45\\cdot 10^{-4}\\ J."
Then, the net electric potential energy of the configuration of the three fixed charges is the sum of "U_1", "U_2" and "U_3":
"U_{net}=1.44\\cdot 10^{-4}\\ J+1.2\\cdot 10^{-4}\\ J+0.45\\cdot 10^{-4}\\ J=3.1\\cdot 10^{-4}\\ J."
Answer:
"U_{net}=3.1\\cdot 10^{-4}\\ J."
Comments
Leave a comment