The capacitance of the parallel-plate capacitor depends on the area "A=\\pi R^2" of plates, the distance between plates "d" and the permittivity of medium between plates "\\varepsilon" (see https://en.wikipedia.org/wiki/Capacitor#Parallel-plate_capacitor or http://hyperphysics.phy-astr.gsu.edu/hbase/electric/pplate.html), so we can write
"C = \\dfrac{\\varepsilon A}{d} = \\dfrac{\\varepsilon \\pi R^2}{d}." The permittivity of air is approximately "\\varepsilon_0 = 8.854\\cdot10^{-12}\\,\\mathrm{F\/m}" , so the capacitance will be
"C = \\dfrac{8.854\\cdot10^{-12}\\,\\mathrm{F\/m}\\cdot \\pi \\cdot (0.1\\,\\mathrm{m})^2}{0.002\\,\\mathrm{m}} =1.39\\cdot10^{-10}\\,\\mathrm{F} ."
The charge that is stored in the capacitor, is
"Q = CEd = 1.39\\cdot10^{-10}\\mathrm{F}\\cdot2.0\\cdot10^5\\,\\mathrm{V\/m}\\cdot0.002\\,\\mathrm{m} = 5.56\\cdot10^{-8}\\,\\mathrm{C}."
The voltage drop will be
"\\Delta V = Ed = 2.0\\cdot10^5\\,\\mathrm{V\/m}\\cdot0.002\\,\\mathrm{m} = 4\\cdot10^2\\,\\mathrm{V}."
Comments
Leave a comment