We see that the line voltage is 430V, which means that the phase voltage is
∣ V p ∣ = V p = 430 3 = 248 V . |V_p|=V_p=\frac{430}{\sqrt3}=248\text{ V}. ∣ V p ∣ = V p = 3 430 = 248 V . Phase resistance of the motor:
R m = V p 2 3 P . R_m=\frac{V_p^2}{3P}. R m = 3 P V p 2 .
Phase reactance of the motor:
X m = V p 2 3 Q = V p 2 3 P tan ϕ . X_m=\frac{V_p^2}{3Q}=\frac{V_p^2}{3P\text{ tan}\phi}. X m = 3 Q V p 2 = 3 P tan ϕ V p 2 . Resistance of lamps:
R L A = V p 2 P A , R L B = V p 2 P B , R L C = V p 2 P C . R_{LA}=\frac{V_p^2}{P_A},\\
\space\\
R_{LB}=\frac{V_p^2}{P_B},\\
\space\\
R_{LC}=\frac{V_p^2}{P_C}. R L A = P A V p 2 , R L B = P B V p 2 , R L C = P C V p 2 . Impedances by phases in complex notation:
Z A = ( R p + R L A ) + j ( X m ) = = ∣ V p ∣ 2 [ ( 1 3 P + 1 P A ) + j ( 1 3 P tan ϕ ) ] = = ( 0.0054 + j 0.00055 ) Ω , Z B = ∣ V p ∣ 2 [ ( 1 3 P + 1 P B ) + j ( 1 3 P tan ϕ ) ] = = ( 0.004 + j 0.00055 ) Ω , Z C = ∣ V p ∣ 2 [ ( 1 3 P + 1 P C ) + j ( 1 3 P tan ϕ ) ] = = ( 0.0029 + j 0.00055 ) Ω . Z_A=(R_p+R_{LA})+j(X_m)^=\\
=|V_{p}|^2\bigg[\bigg(\frac{1}{3P}+\frac{1}{P_A}\bigg)+j\bigg(\frac{1}{3P\text{ tan}\phi}\bigg)\bigg]
=\\=(0.0054+j0.00055)\Omega,\\
\space\\
Z_B=|V_{p}|^2\bigg[\bigg(\frac{1}{3P}+\frac{1}{P_B}\bigg)+j\bigg(\frac{1}{3P\text{ tan}\phi}\bigg)\bigg]
=\\=(0.004+j0.00055)\Omega,\\
\space\\
Z_C=|V_{p}|^2\bigg[\bigg(\frac{1}{3P}+\frac{1}{P_C}\bigg)+j\bigg(\frac{1}{3P\text{ tan}\phi}\bigg)\bigg]=\\=(0.0029+j0.00055)\Omega. Z A = ( R p + R L A ) + j ( X m ) = = ∣ V p ∣ 2 [ ( 3 P 1 + P A 1 ) + j ( 3 P tan ϕ 1 ) ] = = ( 0.0054 + j 0.00055 ) Ω , Z B = ∣ V p ∣ 2 [ ( 3 P 1 + P B 1 ) + j ( 3 P tan ϕ 1 ) ] = = ( 0.004 + j 0.00055 ) Ω , Z C = ∣ V p ∣ 2 [ ( 3 P 1 + P C 1 ) + j ( 3 P tan ϕ 1 ) ] = = ( 0.0029 + j 0.00055 ) Ω. Currents by phases:
I A = V p e j 0 ∘ Z A = 45.7 e − j 5. 8 ∘ kA , I B = V p e j − 12 0 ∘ Z B = 61.4 e − j 12 8 ∘ kA , I C = V p e j 12 0 ∘ Z C = 84 e − j 10 9 ∘ kA , I N = I A + I B + I C = 133 e − j 9 8 ∘ kA . I_A=\frac{V_pe^{j0^\circ}}{Z_A}=45.7e^{-j5.8^\circ}\text{ kA},\\
\space\\
I_B=\frac{V_pe^{j-120^\circ}}{Z_B}=61.4e^{-j128^\circ}\text{ kA},\\
\space\\
I_C=\frac{V_pe^{j120^\circ}}{Z_C}=84e^{-j109^\circ}\text{ kA},\\
\space\\
I_N=I_A+I_B+I_C=133e^{-j98^\circ}\text{ kA}. I A = Z A V p e j 0 ∘ = 45.7 e − j 5. 8 ∘ kA , I B = Z B V p e j − 12 0 ∘ = 61.4 e − j 12 8 ∘ kA , I C = Z C V p e j 12 0 ∘ = 84 e − j 10 9 ∘ kA , I N = I A + I B + I C = 133 e − j 9 8 ∘ kA .
Comments