We see that the line voltage is 430V, which means that the phase voltage is
"|V_p|=V_p=\\frac{430}{\\sqrt3}=248\\text{ V}."Phase resistance of the motor:
"R_m=\\frac{V_p^2}{3P}."
Phase reactance of the motor:
"X_m=\\frac{V_p^2}{3Q}=\\frac{V_p^2}{3P\\text{ tan}\\phi}." Resistance of lamps:
"R_{LA}=\\frac{V_p^2}{P_A},\\\\\n\\space\\\\\nR_{LB}=\\frac{V_p^2}{P_B},\\\\\n\\space\\\\\nR_{LC}=\\frac{V_p^2}{P_C}." Impedances by phases in complex notation:
"Z_A=(R_p+R_{LA})+j(X_m)^=\\\\\n=|V_{p}|^2\\bigg[\\bigg(\\frac{1}{3P}+\\frac{1}{P_A}\\bigg)+j\\bigg(\\frac{1}{3P\\text{ tan}\\phi}\\bigg)\\bigg]\n=\\\\=(0.0054+j0.00055)\\Omega,\\\\\n\\space\\\\\nZ_B=|V_{p}|^2\\bigg[\\bigg(\\frac{1}{3P}+\\frac{1}{P_B}\\bigg)+j\\bigg(\\frac{1}{3P\\text{ tan}\\phi}\\bigg)\\bigg]\n=\\\\=(0.004+j0.00055)\\Omega,\\\\\n\\space\\\\\nZ_C=|V_{p}|^2\\bigg[\\bigg(\\frac{1}{3P}+\\frac{1}{P_C}\\bigg)+j\\bigg(\\frac{1}{3P\\text{ tan}\\phi}\\bigg)\\bigg]=\\\\=(0.0029+j0.00055)\\Omega." Currents by phases:
"I_A=\\frac{V_pe^{j0^\\circ}}{Z_A}=45.7e^{-j5.8^\\circ}\\text{ kA},\\\\\n\\space\\\\\nI_B=\\frac{V_pe^{j-120^\\circ}}{Z_B}=61.4e^{-j128^\\circ}\\text{ kA},\\\\\n\\space\\\\\nI_C=\\frac{V_pe^{j120^\\circ}}{Z_C}=84e^{-j109^\\circ}\\text{ kA},\\\\\n\\space\\\\\nI_N=I_A+I_B+I_C=133e^{-j98^\\circ}\\text{ kA}."
Comments
Leave a comment