Answer to Question #116910 in Electric Circuits for havefun7741

Question #116910
[img]https://upload.cc/i1/2020/05/09/uYgzwX.jpg[/img]




R=4
1
Expert's answer
2020-05-20T09:10:07-0400

Solution

From the function for voltage we see that the angular frequency is 314 rad/s. Therefore, we can calculate the magnitude of current:

I=VZ=VR2+(ωL)2= =38052+(100π6103)2=71.1 A.I=\frac{V}{Z}=\frac{V}{\sqrt{R^2+(\omega L)^2}}=\\ \space\\ =\frac{380}{\sqrt{5^2+(100\pi\cdot6\cdot10^{-3})^2}}=71.1\text{ A}.

Therefore, since all elements are linear, the current as a function of time is


i(t)=71.1 sin(100πt).i(t)=71.1\text{ sin}(100\pi t).

The phase shift between voltage and current:


ϕ=atanXLR=atan100π0.0065=20.7.\phi=\text{atan}\frac{X_L}{R}=\text{atan}\frac{100\pi\cdot0.006}{5}=20.7^\circ.

The average power consumed by the resistor:


P=UI2 cosϕ=38071.12 cos20.7=12700 W.P=\frac{UI}{2}\text{ cos}\phi=\frac{380\cdot71.1}{2}\text{ cos}20.7^\circ=12700\text{ W}.


Solution

The voltage generated in the secondary winding:


V2=(VI1R1)N2N1. I1=N2N1I2. I2=V2R2, I1=N2V2N1R2.V_2=(V-I_1R_1)\frac{N_2}{N_1}.\\ \space\\ I_1=\frac{N_2}{N_1}I_2.\\ \space\\ I_2=\frac{V_2}{R_2}, \\\space\\\rightarrow I_1=\frac{N_2V_2}{N_1R_2.}

Substituting this into the first equation, obtain V2:


V2=VR2N1N2R2N12+R1N22.V_2=V\frac{R_2N_1N_2}{R_2N_1^2+R_1N_2^2}.

Calculate the power:


P2=V22R2=R2(VN1N2R2N12+R1N22)2=40 W.P_2=\frac{V_2^2}{R_2}=R_2\bigg(\frac{VN_1N_2}{R_2N_1^2+R_1N_2^2}\bigg)^2=40\text{ W}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment