Solution
From the function for voltage we see that the angular frequency is 314 rad/s. Therefore, we can calculate the magnitude of current:
I = V Z = V R 2 + ( ω L ) 2 = = 380 5 2 + ( 100 π ⋅ 6 ⋅ 1 0 − 3 ) 2 = 71.1 A . I=\frac{V}{Z}=\frac{V}{\sqrt{R^2+(\omega L)^2}}=\\
\space\\
=\frac{380}{\sqrt{5^2+(100\pi\cdot6\cdot10^{-3})^2}}=71.1\text{ A}. I = Z V = R 2 + ( ω L ) 2 V = = 5 2 + ( 100 π ⋅ 6 ⋅ 1 0 − 3 ) 2 380 = 71.1 A . Therefore, since all elements are linear, the current as a function of time is
i ( t ) = 71.1 sin ( 100 π t ) . i(t)=71.1\text{ sin}(100\pi t). i ( t ) = 71.1 sin ( 100 π t ) . The phase shift between voltage and current:
ϕ = atan X L R = atan 100 π ⋅ 0.006 5 = 20. 7 ∘ . \phi=\text{atan}\frac{X_L}{R}=\text{atan}\frac{100\pi\cdot0.006}{5}=20.7^\circ. ϕ = atan R X L = atan 5 100 π ⋅ 0.006 = 20. 7 ∘ . The average power consumed by the resistor:
P = U I 2 cos ϕ = 380 ⋅ 71.1 2 cos 20. 7 ∘ = 12700 W . P=\frac{UI}{2}\text{ cos}\phi=\frac{380\cdot71.1}{2}\text{ cos}20.7^\circ=12700\text{ W}. P = 2 U I cos ϕ = 2 380 ⋅ 71.1 cos 20. 7 ∘ = 12700 W .
Solution
The voltage generated in the secondary winding:
V 2 = ( V − I 1 R 1 ) N 2 N 1 . I 1 = N 2 N 1 I 2 . I 2 = V 2 R 2 , → I 1 = N 2 V 2 N 1 R 2 . V_2=(V-I_1R_1)\frac{N_2}{N_1}.\\
\space\\
I_1=\frac{N_2}{N_1}I_2.\\
\space\\
I_2=\frac{V_2}{R_2},
\\\space\\\rightarrow I_1=\frac{N_2V_2}{N_1R_2.} V 2 = ( V − I 1 R 1 ) N 1 N 2 . I 1 = N 1 N 2 I 2 . I 2 = R 2 V 2 , → I 1 = N 1 R 2 . N 2 V 2 Substituting this into the first equation, obtain V 2 :
V 2 = V R 2 N 1 N 2 R 2 N 1 2 + R 1 N 2 2 . V_2=V\frac{R_2N_1N_2}{R_2N_1^2+R_1N_2^2}. V 2 = V R 2 N 1 2 + R 1 N 2 2 R 2 N 1 N 2 . Calculate the power:
P 2 = V 2 2 R 2 = R 2 ( V N 1 N 2 R 2 N 1 2 + R 1 N 2 2 ) 2 = 40 W . P_2=\frac{V_2^2}{R_2}=R_2\bigg(\frac{VN_1N_2}{R_2N_1^2+R_1N_2^2}\bigg)^2=40\text{ W}. P 2 = R 2 V 2 2 = R 2 ( R 2 N 1 2 + R 1 N 2 2 V N 1 N 2 ) 2 = 40 W .
Comments