Explanations & calculations
Consider the sketch attached.
"\\qquad\\qquad\ndB = \\frac{\\mu_0i}{4\\pi}\\bigg(\\frac{ldl*\\sin\\theta}{r^2}\\bigg) \\cdots(1)" ; symbols have the standard meanings
Proof:
"\\qquad\\qquad\\qquad\n\\begin{aligned}\n\\small dl &= \\small -\\frac{d}{\\sin^2\\theta}*d\\theta\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small dB &= \\small \\frac{\\mu_0i}{4\\pi}\\bigg(\\frac{(\\frac{-d}{\\sin^2\\theta_1}*d\\theta)\\sin \\theta }{(\\frac{d}{\\sin\\theta_1})^2}\\bigg)\\\\\n&= \\small \\frac{\\mu_0i}{4\\pi}\\bigg(\\frac{-\\sin\\theta_1}{d}d\\theta\\bigg)\\\\\n&= \\small \\frac{-\\mu_0i}{4\\pi d}\\big(\\sin\\theta d\\theta\\big)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\intop dB &= \\small \\frac{-\\mu_0i}{4\\pi d} \\intop_{\\theta_1}^{(\\pi-\\theta_2)} \\sin\\theta d\\theta\\\\\n\\small B &= \\small \\frac{-\\mu_0i}{4\\pi d}\\big(-\\cos\\theta_2 - \\cos\\theta_1\\big)\\\\\n&= \\small \\frac{\\mu_0i}{4\\pi d}\\big(\\cos\\theta_2 + \\cos\\theta_1\\big)\n\\end{aligned}"
"\\qquad\\qquad\\qquad\n\\begin{aligned}\n\\small B = \\small \\frac{\\mu_0i}{2\\pi d}\n\\end {aligned}"
Answer
"\\qquad\\qquad\n\\begin{aligned}\n\\small B &= \\small \\frac{4\\pi\\times10^{-7}TmA^{-1}\\times6A}{2\\pi\\times0.1m}\\\\\n&= \\small \\bold{1.2\\times10^{-5}T}\n\\end{aligned}"
Comments
Leave a comment