"i = I_0\\sin(\\omega t-\\phi_0) = 5\\sin(100\\pi t-0.435)" .
Comparing left and right side, find:
a) The amplitude is "I_0 = 5 A" , frequency is "f = \\omega\/2\\pi = 50 Hz" , periodic time is "T = 1\/f = 0.02s" and phase angle is "\\phi_0 = 0.435 rad = 0.435\\cdot 180\/\\pi = 24.9 \\degree."
b) The value of current at t = 0: "i(0) = 5\\sin(100\\pi \\cdot 0-0.435) = 5\\sin(-0.435) = -2.107A"
c) The value of current at t =8ms: "i(8ms) = 5\\sin(100\\pi \\cdot 8\\cdot10^{-3}-0.435) =4.37 A"
d) The time when the current is first a maximum is a time, when "\\frac{di}{dt} = 0" . Thus, "\\frac{di}{dt} = 5\\cdot 100\\pi \\cos(100\\pi t-0.435) = 0 \\Rightarrow 100\\pi t-0.435 = \\pi\/2 \\Rightarrow t = 6.38ms."
e) The time when the current first reaches 3A: "i(t) = 5\\sin(100\\pi \\cdot t-0.435) = 3\\Rightarrow100\\pi \\cdot t-0.435 = \\arcsin\\frac{3}{5}\\Rightarrow t = 3.43ms"
Sketch one cycle of the waveform showing relevant points:
Comments
Thanks for awesome explanation.
Leave a comment